Chemical vapor deposition of aluminum nanowires on metal substrates for electrical energy storage applications.

Metal nanowires show promise in a broad range of applications, but many synthesis techniques require complex methodologies. We have developed a method for depositing patterned aluminum nanowires (Al NWs) onto Cu, Ni, and stainless steel substrates using low-pressure decomposition of trimethylamine alane complex. The NWs exhibited an average diameter in the range from 45 to 85 nm, were crystalline, and did not contain a detectable amount of carbon impurities. Atomic layer deposition of 50 nm of vanadium oxide on the surface of Al NW allows fabrication of supercapacitor electrodes with volumetric capacitance in excess of 1400 F·cc(-3), which exceeds the capacitance of traditional activated carbon supercapacitor electrodes by more than an order of magnitude.

[1]  Alexander Kvit,et al.  High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. , 2010, ACS nano.

[2]  Alison B. Flatau,et al.  Magnetic nanowires for acoustic sensors (invited) , 2006 .

[3]  Shaoxing Qu,et al.  Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. , 2007 .

[4]  Younan Xia,et al.  Growing Pt nanowires as a densely packed array on metal gauze. , 2007, Journal of the American Chemical Society.

[5]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[6]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[7]  G. Huber,et al.  Raney Ni-Sn Catalyst for H2 Production from Biomass-Derived Hydrocarbons , 2003, Science.

[8]  Bruce Dunn,et al.  Electrically conductive oxide aerogels: newmaterials in electrochemistry , 2001 .

[9]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[10]  I. Fragalà,et al.  Template-free and seedless growth of Pt nanocolumns: imaging and probing their nanoelectrical properties. , 2007, ACS nano.

[11]  An-Ping Li,et al.  Large discrete resistance jump at grain boundary in copper nanowire. , 2010, Nano letters.

[12]  Alexander Kvit,et al.  Tailoring the pore alignment for rapid ion transport in microporous carbons. , 2010, Journal of the American Chemical Society.

[13]  S. Tolbert,et al.  The Relationship Between Nanoscale Structure and Electrochemical Properties of Vanadium Oxide Nanorolls , 2004 .

[14]  David J. Sellmyer,et al.  Magnetism of Fe, Co and Ni Nanowires in Self-Assembled Arrays , 2001 .

[15]  Bruce Dunn,et al.  Electrochemical Properties of High Surface Area Vanadium Oxide Aerogels , 1999 .

[16]  Zheng Xu,et al.  Template Synthesis of an Array of Nickel Nanotubules and Its Magnetic Behavior , 2001 .

[17]  D. Aurbach,et al.  Synthesis, investigation and practical application in lithium batteries of some compounds based on vanadium oxides , 1999 .

[18]  K. Ounadjela,et al.  Magnetization processes in nickel and cobalt electrodeposited nanowires , 1997 .

[19]  B. Dunn,et al.  Electrochemical Properties of Vanadium Oxide Aerogels and Aerogel Nanocomposites , 2003 .

[20]  H. Gamble,et al.  Multiple self-aligned iron nanowires by a dual selective chemical vapor deposition process , 2007 .

[21]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[22]  J. Boo,et al.  Growth of magnesium oxide thin films using single molecular precursors by metal-organic chemical vapor deposition , 1999 .

[23]  D. Beach,et al.  Chemical vapor deposition of aluminum from trimethylamine‐alane , 1989 .

[24]  D. He,et al.  Deformation twins in nanocrystalline Al , 2003 .

[25]  C. Pham‐Huu,et al.  The role of mechanically induced defects in carbon nanotubes to modify the properties of electrodes for PEM fuel cell , 2009 .

[26]  Bruce Dunn,et al.  Vanadium Oxide-Carbon Nanotube Composite Electrodes for Use in Secondary Lithium Batteries , 2002 .

[27]  James R. Thompson,et al.  Hard superconductivity of a soft metal in the quantum regime , 2006 .

[28]  Kwang S. Kim,et al.  Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase , 2001, Science.

[29]  Size dependent breakdown of superconductivity in ultranarrow nanowires. , 2005, Nano letters.

[30]  Xuemei Cheng,et al.  Deformation Twinning in Nanocrystalline Aluminum , 2003, Science.

[31]  Pierre-Louis Taberna,et al.  Modification of Al current collector surface by sol–gel deposit for carbon–carbon supercapacitor applications , 2004 .

[32]  K. Arutyunov,et al.  Quantum fluctuations in ultranarrow superconducting aluminum nanowires , 2008, 0801.2516.

[33]  Pierre-Louis Taberna,et al.  Nanoarchitectured 3D Cathodes for Li‐Ion Microbatteries , 2010, Advanced materials.

[34]  B. Dunn,et al.  High‐Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites , 2011, Advanced materials.

[35]  B. Dunn,et al.  Synthesis and Electrochemical Properties of Vanadium Oxide Aerogels Prepared by a Freeze-Drying Process , 2004 .

[36]  Zhong Lin Wang,et al.  Growth of large-area aligned molybdenum nanowires by high temperature chemical vapor deposition: synthesis, growth mechanism, and device application. , 2006, The journal of physical chemistry. B.

[37]  T. Brousse,et al.  Aluminum negative electrode in lithium ion batteries , 2001 .

[38]  S. McWhorter,et al.  Free standing aluminum nanostructures as anodes for Li-ion rechargeable batteries , 2010 .

[39]  G. Yushin,et al.  Towards Ultrathick Battery Electrodes: Aligned Carbon Nanotube – Enabled Architecture , 2012, Advanced materials.

[40]  Hyungsoo Choi,et al.  Copper Nanowires with a Five‐Twinned Structure Grown by Chemical Vapor Deposition , 2008 .

[41]  Sang Bok Lee,et al.  Nanotubular metal-insulator-metal capacitor arrays for energy storage. , 2009, Nature nanotechnology.

[42]  Yury Gogotsi,et al.  Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors , 2007 .

[43]  R. Nuzzo,et al.  Aluminum thin film growth by the thermal decomposition of triethylamine alane , 1991 .

[44]  M. Hirscher,et al.  Metal hydride materials for solid hydrogen storage: a review , 2007 .

[45]  P. Marcus,et al.  An in situ XPS study of sputter-deposited aluminium thin films on graphite , 1994 .

[46]  Chunli Bai,et al.  Ordered Ni−Cu Nanowire Array with Enhanced Coercivity , 2003 .

[47]  Sung-Ho Park,et al.  Seedless growth of free-standing copper nanowires by chemical vapor deposition. , 2004, Journal of the American Chemical Society.

[48]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[49]  U. Jansson,et al.  Progress in chemical vapor deposition , 1993 .

[50]  Mykola Seredych,et al.  Combined Effect of Nitrogen‐ and Oxygen‐Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors , 2009 .

[51]  C. Granqvist Transparent conductors as solar energy materials: A panoramic review , 2007 .

[52]  T. Al-Samman Comparative study of the deformation behavior of hexagonal magnesium–lithium alloys and a conventional magnesium AZ31 alloy , 2009 .

[53]  Meital Reches,et al.  Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes , 2003, Science.