Surface-from-Gradients with Incomplete Data for Single View Modeling

Surface gradients are useful to surface reconstruction in single view modeling, shape-from-shading, and photometric stereo. Previous algorithms minimize a complex, nonlinear energy functional, or require dense surface gradients to perform integration to generate 3D locations, or require user-input heights to constrain the solution space, or produce severe distortion and smooth out surface details. Most single-view algorithms output a Monge patch (height-field), which may introduce further surface distortion along object silhouettes and surface orientation discontinuities. Our proposed algorithm operates on a single view of complete or incomplete data. The data can be gradients without 3D locations, or 3D locations without gradients. The output surface, which is not necessarily a height-field, preserves salient depth and orientation discontinuities. Experimental comparisons on both simple and complex data show that our method produces better surfaces with significantly less distortion and more details preserved. The implementation of our closed-form solution is very straightforward.

[1]  William A. Barrett,et al.  Intelligent scissors for image composition , 1995, SIGGRAPH.

[2]  Szymon Rusinkiewicz,et al.  Efficiently combining positions and normals for precise 3D geometry , 2005, ACM Trans. Graph..

[3]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[4]  Hans-Peter Seidel,et al.  Ridge-valley lines on meshes via implicit surface fitting , 2004, ACM Trans. Graph..

[5]  Steven M. Seitz,et al.  Shape and spatially-varying BRDFs from photometric stereo , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[6]  Rama Chellappa,et al.  What Is the Range of Surface Reconstructions from a Gradient Field? , 2006, ECCV.

[7]  Mike J. Chantler,et al.  Can two specular pixels calibrate photometric stereo? , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[8]  Jan J. Koenderink,et al.  Pictorial relief , 2019, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Li Zhang,et al.  Single view modeling of free-form scenes , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[11]  Jian Sun,et al.  Symmetric stereo matching for occlusion handling , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Peter Kovesi,et al.  Shapelets correlated with surface normals produce surfaces , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[13]  Steven M. Seitz,et al.  Example-based photometric stereo: shape reconstruction with general, varying BRDFs , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Andrew W. Fitzgibbon,et al.  Single View Reconstruction of Curved Surfaces , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  David J. Kriegman,et al.  Passive photometric stereo from motion , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[16]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[17]  Tai-Pang Wu,et al.  Visible Surface Reconstruction from Normals with Discontinuity Consideration , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[18]  Demetri Terzopoulos,et al.  Symmetry-seeking models and 3D object reconstruction , 1988, International Journal of Computer Vision.

[19]  Mi-Suen Lee,et al.  A Computational Framework for Segmentation and Grouping , 2000 .

[20]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Rama Chellappa,et al.  A Method for Enforcing Integrability in Shape from Shading Algorithms , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[24]  Gérard G. Medioni,et al.  Inference of Integrated Surface, Curve, and Junction Descriptions From Sparse 3D Data , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Harry Shum,et al.  ShapePalettes: interactive normal transfer via sketching , 2007, ACM Trans. Graph..

[26]  Tai-Pang Wu,et al.  Dense Photometric Stereo by Expectation Maximization , 2006, ECCV.