Magneto-ionic control of interfacial magnetism.

In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here, we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms. We directly observe in situ voltage-driven O(2-) migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.75 erg cm(-2) at just 2 V. We exploit the thermally activated nature of ion migration to markedly increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.

[1]  Bernard Rodmacq,et al.  Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. , 2010, Nature materials.

[2]  Andrew G. Glen,et al.  APPL , 2001 .

[3]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[4]  Robert W. Balluffi,et al.  Kinetics Of Materials , 2005 .

[5]  Bernard Dieny,et al.  Influence of thermal annealing on the perpendicular magnetic anisotropy of Pt/Co/AlOx trilayers , 2009 .

[6]  Wei-gang Wang,et al.  Electric-field-assisted switching in magnetic tunnel junctions. , 2012, Nature materials.

[7]  P. Allongue,et al.  Influence of the surface chemistry on the electric-field control of the magnetization of ultrathin films , 2012 .

[8]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[9]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[10]  Yoichi Shiota,et al.  Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. , 2011, Nature materials.

[11]  Martha E. Grady,et al.  Effects of chemical bonding on heat transport across interfaces. , 2012, Nature materials.

[12]  J. Howe Bonding, Structure and Properties of Metal/Ceramic Interfaces , 1993 .

[13]  Bernard Rodmacq,et al.  X-ray analysis of the magnetic influence of oxygen in Pt/Co/AlOx trilayers , 2008 .

[14]  J. H. Franken,et al.  Shift registers based on magnetic domain wall ratchets with perpendicularly anisotrpoy , 2012 .

[15]  D. Lacour,et al.  Magnetic properties of postoxidized Pt∕Co∕Al layers with perpendicular anisotropy , 2007 .

[16]  S. Mangin,et al.  Magnetic anisotropy modified by electric field in V/Fe/MgO(001)/Fe epitaxial magnetic tunnel junction , 2013 .

[17]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[18]  P. Stair Metal-oxide interfaces: where the action is. , 2011, Nature chemistry.

[19]  Uwe Bauer,et al.  Voltage-controlled domain wall traps in ferromagnetic nanowires. , 2013, Nature nanotechnology.

[20]  Mogens Bjerg Mogensen,et al.  Kinetic and geometric aspects of solid oxide fuel cell electrodes , 1996 .

[21]  J R Smith,et al.  Nonstoichiometric interfaces and Al2O3 adhesion with Al and Ag. , 2000, Physical review letters.

[22]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[23]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[24]  T. Devolder,et al.  Planar patterned magnetic media obtained by ion irradiation , 1998, Science.

[25]  James M. Howe,et al.  Bonding, structure, and properties of metal/ceramic interfaces: Part 1 Chemical bonding, chemical reaction, and interfacial structure , 1993 .

[26]  L. Schultz,et al.  Electrochemically driven variation of magnetic properties in ultrathin CoPt films , 2013 .

[27]  Yusuke Yamada,et al.  Nanocrystal bilayer for tandem catalysis. , 2011, Nature chemistry.

[28]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[29]  G. Beach,et al.  Magnetoelectric charge trap memory. , 2012, Nano letters.

[30]  Yoshishige Suzuki,et al.  Reversible change in the oxidation state and magnetic circular dichroism of Fe driven by an electric field at the FeCo/MgO interface , 2013 .

[31]  A. Tulapurkar,et al.  Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. , 2009, Nature nanotechnology.

[32]  S. Parkin,et al.  Suppression of Metal-Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation , 2013, Science.

[33]  Robert W. Balluffi,et al.  Kinetics of Materials: Balluffi/Kinetics , 2005 .

[34]  Uwe Bauer,et al.  Electric field control of domain wall propagation in Pt/Co/GdOx films , 2012 .

[35]  Junhao Chu,et al.  Surface magnetoelectric effect in ferromagnetic metal films. , 2008, Physical review letters.

[36]  B. Diény,et al.  Oscillatory behavior of perpendicular magnetic anisotropy in Pt/Co/Al(Ox) films as a function of Al thickness , 2009 .

[37]  Voltage-gated modulation of domain wall creep dynamics in an ultrathin metallic ferromagnet , 2012, 1207.2996.