A Fast Mesh Deformation Method for Neuroanatomical Surface Inflated Representations

In this paper we present a new metric preserving deformation method which permits to generate smoothed representations of neuroanatomical structures. These surfaces are approximated by triangulated meshes which are evolved using an external velocity field, modified by a local curvature dependent contribution. This motion conserves local metric properties since the external force is modified by explicitely including an area preserving term into the motion equation. We show its applicability by computing inflated representations from real neuroanatomical data and obtaining smoothed surfaces whose local area distortion is less than a 5%, when comparing with the original ones.

[1]  D. Louis Collins,et al.  Object-based morphometry of the cerebral cortex , 2004, IEEE Transactions on Medical Imaging.

[2]  Min-Ying Su,et al.  Application of an automated voxel-based morphometry technique to assess regional gray and white matter brain atrophy in a canine model of aging , 2006, NeuroImage.

[3]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[4]  D. Kennedy,et al.  Magnetic resonance imaging–based brain morphometry: Development and application to normal subjects , 1989, Annals of neurology.

[5]  Michael I. Miller,et al.  Brain Segmentation and the Generation of Cortical Surfaces , 1999, NeuroImage.

[6]  John W. Harwell,et al.  Integrated software for surface-based analyses of cerebral cortex , 2001, NeuroImage.

[7]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[8]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[9]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[10]  Ross T. Whitaker,et al.  Geometric surface smoothing via anisotropic diffusion of normals , 2002, IEEE Visualization, 2002. VIS 2002..

[11]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[12]  Olivier D. Faugeras,et al.  Area Preserving Cortex Unfolding , 2004, MICCAI.

[13]  Paul M. Thompson,et al.  Intrinsic brain surface conformal mapping using a variational method , 2004, SPIE Medical Imaging.

[14]  M Ashtari,et al.  Computerized volume measurement of brain structure. , 1990, Investigative radiology.

[15]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[16]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[17]  Ron Kikinis,et al.  On the Laplace-Beltrami operator and brain surface flattening , 1999, IEEE Transactions on Medical Imaging.

[18]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[20]  David A. Rottenberg,et al.  Cortical surface flattening using least square conformal mapping with minimal metric distortion , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[21]  Shing-Tung Yau,et al.  Computing Conformal Structure of Surfaces , 2002, Commun. Inf. Syst..

[22]  Kenneth Stephenson,et al.  Cortical cartography using the discrete conformal approach of circle packings , 2004, NeuroImage.

[23]  Gerardo Hermosillo,et al.  Cortex Unfolding Using Level Set Methods , 1999 .

[24]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[25]  D. V. van Essen,et al.  Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System , 1996, Journal of Cognitive Neuroscience.

[26]  Johan Montagnat,et al.  A review of deformable surfaces: topology, geometry and deformation , 2001, Image Vis. Comput..

[27]  D. V. van Essen,et al.  Structural and Functional Analyses of Human Cerebral Cortex Using a Surface-Based Atlas , 1997, The Journal of Neuroscience.

[28]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[29]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[30]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[31]  M. Horsfield,et al.  Intra- and inter-observer agreement of brain MRI lesion volume measurements in multiple sclerosis. A comparison of techniques. , 1995, Brain : a journal of neurology.

[32]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[33]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[34]  M Corbetta,et al.  Mapping fMRI Activation Data onto a Cortical Atlas using Surface-Based Deformation , 1998, NeuroImage.

[35]  H A Drury,et al.  Computational methods for reconstructing and unfolding the cerebral cortex. , 1995, Cerebral cortex.

[36]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[37]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .