Olfactory maps, circuits and computations

Sensory information in the visual, auditory and somatosensory systems is organized topographically, with key sensory features ordered in space across neural sheets. Despite the existence of a spatially stereotyped map of odor identity within the olfactory bulb, it is unclear whether the higher olfactory cortex uses topography to organize information about smells. Here, we review recent work on the anatomy, microcircuitry and neuromodulation of two higher-order olfactory areas: the piriform cortex and the olfactory tubercle. The piriform is an archicortical region with an extensive local associational network that constructs representations of odor identity. The olfactory tubercle is an extension of the ventral striatum that may use reward-based learning rules to encode odor valence. We argue that in contrast to brain circuits for other sensory modalities, both the piriform and the olfactory tubercle largely discard any topography present in the bulb and instead use distributive afferent connectivity, local learning rules and input from neuromodulatory centers to build behaviorally relevant representations of olfactory stimuli.

[1]  Michael D. Ehlers,et al.  Neural Circuit Mechanisms for Pattern Detection and Feature Combination in Olfactory Cortex , 2011, Neuron.

[2]  Lowell E. White Olfactory bulb projections of the rat , 1965 .

[3]  Donald A. Wilson,et al.  Cortical Processing of Odor Objects , 2011, Neuron.

[4]  Andreas T. Schaefer,et al.  Two Distinct Channels of Olfactory Bulb Output , 2012, Neuron.

[5]  D. Wilson,et al.  Habituation of odor responses in the rat anterior piriform cortex. , 1998, Journal of neurophysiology.

[6]  M. Hasselmo,et al.  Cholinergic modulation of cortical associative memory function. , 1992, Journal of neurophysiology.

[7]  Jeffery R Wickens,et al.  Inhibitory interactions between spiny projection neurons in the rat striatum. , 2002, Journal of neurophysiology.

[8]  M. Hasselmo,et al.  Neuromodulation and the functional dynamics of piriform cortex. , 2001, Chemical senses.

[9]  Mnh,et al.  Histologie du Système Nerveux de Lʼhomme et des Vertébrés , 1998 .

[10]  D. Wesson,et al.  Age-dependent alterations in the number, volume, and localization of islands of Calleja within the olfactory tubercle , 2013, Neurobiology of Aging.

[11]  J. Fallon The islands of Calleja complex of rat basal forebrain II: Connections of medium and large sized cells , 1983, Brain Research Bulletin.

[12]  Rainer W Friedrich,et al.  Recent dynamics in olfactory population coding , 2001, Current Opinion in Neurobiology.

[13]  Donald A Wilson,et al.  Rapid, experience-induced enhancement in odorant discrimination by anterior piriform cortex neurons. , 2003, Journal of neurophysiology.

[14]  J. Bekkers,et al.  Inhibitory neurons in the anterior piriform cortex of the mouse: Classification using molecular markers , 2010, The Journal of comparative neurology.

[15]  Donald A. Wilson,et al.  Sniffing out the contributions of the olfactory tubercle to the sense of smell: Hedonics, sensory integration, and more? , 2011, Neuroscience & Biobehavioral Reviews.

[16]  Gilles Laurent,et al.  Olfactory network dynamics and the coding of multidimensional signals , 2002, Nature Reviews Neuroscience.

[17]  G. Shepherd,et al.  Olfactory nerve projections to the olfactory bulb in rabbit: demonstration by means of a simplified ammoniacal silver degeneration method. , 1970, Brain research.

[18]  J. Fallon,et al.  The islands of Calleja complex of rat basal forebrain. III. Histochemical evidence for a Striatopallidal system , 1983, The Journal of comparative neurology.

[19]  Adam Ponzi,et al.  Sequentially Switching Cell Assemblies in Random Inhibitory Networks of Spiking Neurons in the Striatum , 2010, The Journal of Neuroscience.

[20]  W. Löscher,et al.  THE ROLE OF THE PIRIFORM CORTEX IN KINDLING , 1996, Progress in Neurobiology.

[21]  John M. Bekkers,et al.  Neurons and circuits for odor processing in the piriform cortex , 2013, Trends in Neurosciences.

[22]  G. Schoenbaum,et al.  Neural Encoding in Ventral Striatum during Olfactory Discrimination Learning , 2003, Neuron.

[23]  Naoshige Uchida,et al.  Odor Representations in Olfactory Cortex: Distributed Rate Coding and Decorrelated Population Activity , 2012, Neuron.

[24]  Jeffery R. Wickens,et al.  Cell Assemblies in Large Sparse Inhibitory Networks of Biologically Realistic Spiking Neurons , 2008, NIPS.

[25]  Venkatesh N. Murthy,et al.  Optophysiological analysis of associational circuits in the olfactory cortex , 2012, Front. Neural Circuits.

[26]  Lewis B. Haberly,et al.  The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat , 1977, Brain Research.

[27]  C. Petersen The Functional Organization of the Barrel Cortex , 2007, Neuron.

[28]  S. Ikemoto Involvement of the Olfactory Tubercle in Cocaine Reward: Intracranial Self-Administration Studies , 2003, The Journal of Neuroscience.

[29]  O. Rampin,et al.  Electrophysiological responses of rat olfactory tubercle neurons to biologically relevant odours , 2012, The European journal of neuroscience.

[30]  Linda B. Buck,et al.  A zonal organization of odorant receptor gene expression in the olfactory epithelium , 1993, Cell.

[31]  Anatol C. Kreitzer,et al.  Physiology and pharmacology of striatal neurons. , 2009, Annual review of neuroscience.

[32]  H. Yin,et al.  The role of the basal ganglia in habit formation , 2006, Nature Reviews Neuroscience.

[33]  L. Haberly,et al.  Odor‐evoked activity is spatially distributed in piriform cortex , 2003, The Journal of comparative neurology.

[34]  Alan Carleton,et al.  Dynamic Ensemble Odor Coding in the Mammalian Olfactory Bulb: Sensory Information at Different Timescales , 2008, Neuron.

[35]  Donald A. Wilson,et al.  Smelling Sounds: Olfactory–Auditory Sensory Convergence in the Olfactory Tubercle , 2010, The Journal of Neuroscience.

[36]  J. Bower,et al.  Olfactory cortex: model circuit for study of associative memory? , 1989, Trends in Neurosciences.

[37]  J. Halliwell,et al.  Electrophysiological characterization of laminar synaptic inputs to the olfactory tubercle of the rat studied in vitro: modulation of glutamatergic transmission by cholinergic agents is pathway‐specific , 2001, The European journal of neuroscience.

[38]  C. Pennartz,et al.  The nucleus accumbens as a complex of functionally distinct neuronal ensembles: An integration of behavioural, electrophysiological and anatomical data , 1994, Progress in Neurobiology.

[39]  Donald A Wilson,et al.  Olfactory perceptual stability and discrimination , 2008, Nature Neuroscience.

[40]  Vadym Gnatkovsky,et al.  Distribution of the olfactory fiber input into the olfactory tubercle of the in vitro isolated guinea pig brain. , 2009, Journal of neurophysiology.

[41]  Jennifer D. Whitesell,et al.  Information for Decision Making and Stimulus Identification is Multiplexed in Sensory Cortex , 2013, Nature Neuroscience.

[42]  A. Allison The structure of the olfactory bulb and its relationship to the olfactory pathways in the rabbit and the rat , 1953, The Journal of comparative neurology.

[43]  Jeffry S. Isaacson,et al.  From Dendrite to Soma: Dynamic Routing of Inhibition by Complementary Interneuron Microcircuits in Olfactory Cortex , 2010, Neuron.

[44]  D. Wilson,et al.  Odor specificity of habituation in the rat anterior piriform cortex. , 2000, Journal of neurophysiology.

[45]  M. Hasselmo,et al.  High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. , 2004, Progress in brain research.

[46]  Norimitsu Suzuki,et al.  Microcircuits Mediating Feedforward and Feedback Synaptic Inhibition in the Piriform Cortex , 2012, The Journal of Neuroscience.

[47]  M. Hasselmo,et al.  Electrical stimulation of the horizontal limb of the diagonal band of broca modulates population EPSPs in piriform cortex. , 1999, Journal of neurophysiology.

[48]  Jeffry S. Isaacson,et al.  A Major Role for Intracortical Circuits in the Strength and Tuning of Odor-Evoked Excitation in Olfactory Cortex , 2011, Neuron.

[49]  Donald A Wilson,et al.  Olfactory cortical adaptation facilitates detection of odors against background. , 2006, Journal of neurophysiology.

[50]  Kevin M. Franks,et al.  Strong Single-Fiber Sensory Inputs to Olfactory Cortex: Implications for Olfactory Coding , 2006, Neuron.

[51]  J. Price An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex , 1973, The Journal of comparative neurology.

[52]  M. Luskin,et al.  The distribution of axon collaterals from the olfactory bulb and the nucleus of the horizontal limb of the diagonal band to the olfactory cortex, demonstrated by double retrograde labeling techniques , 1982, The Journal of comparative neurology.

[53]  C. Linster,et al.  Odor perception and olfactory bulb plasticity in adult mammals. , 2009, Journal of Neurophysiology.

[54]  Xin Jin,et al.  Start/stop signals emerge in nigrostriatal circuits during sequence learning , 2010, Nature.

[55]  S. Itohara,et al.  Innate versus learned odour processing in the mouse olfactory bulb , 2007, Nature.

[56]  Venkatesh N Murthy,et al.  Olfactory maps in the brain. , 2011, Annual review of neuroscience.

[57]  Hongkui Zeng,et al.  Olfactory cortical neurons read out a relative time code in the olfactory bulb , 2013, Nature Neuroscience.

[58]  Charles J. Wilson,et al.  GABAergic microcircuits in the neostriatum , 2004, Trends in Neurosciences.

[59]  Richard Axel,et al.  Visualizing an Olfactory Sensory Map , 1996, Cell.

[60]  N. Buonviso,et al.  The Projections of Mitral Cells from Small Local Regions of the Olfactory Bulb: An Anterograde Tracing Study Using PHA‐L (Phaseolus vulgaris Leucoagglutinin) , 1991, The European journal of neuroscience.

[61]  K. Berridge,et al.  Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens , 2008, Nature Neuroscience.

[62]  Richard Axel,et al.  Topographic organization of sensory projections to the olfactory bulb , 1994, Cell.

[63]  J. Halliwell,et al.  Evidence for enhancement of gap junctional coupling between rat island of Calleja granule cells in vitro by the activation of dopamine D3 receptors , 1998, The Journal of physiology.

[64]  J. Amoore Stereochemical and Vibrational Theories of Odour , 1971, Nature.

[65]  R. Broadwell Olfactory relationships of the telencephalon and diencephalon in the rabbit. II. An autoradiographic and horseradish peroxidase study of the efferent connections of the anterior olfactory nucleus , 1975, The Journal of comparative neurology.

[66]  M. Kadohisa,et al.  Cortical contributions to olfaction: plasticity and perception. , 2006, Seminars in cell & developmental biology.

[67]  H. Ojima,et al.  The trajectory of mitral cell axons in the rabbit olfactory cortex revealed by intracellular HRP injection , 1984, The Journal of comparative neurology.

[68]  Donald A Wilson,et al.  Spatial and Temporal Distribution of Odorant-Evoked Activity in the Piriform Cortex , 2007, The Journal of Neuroscience.

[69]  J. Isaacson,et al.  Odor representations in mammalian cortical circuits , 2010, Current Opinion in Neurobiology.

[70]  B. Strowbridge,et al.  Diversity of neural signals mediated by multiple, burst-firing mechanisms in rat olfactory tubercle neurons. , 2007, Journal of neurophysiology.

[71]  S. Nicola,et al.  Contrast enhancement: a physiological effect of striatal dopamine? , 2004, Cell and Tissue Research.

[72]  Donald A. Wilson,et al.  Olfactory perceptual learning: the critical role of memory in odor discrimination , 2003, Neuroscience & Biobehavioral Reviews.

[73]  L. Heimer,et al.  Cell configurations in the olfactory tubercle of the rat , 1984, The Journal of comparative neurology.

[74]  Adam Ponzi,et al.  Input Dependent Cell Assembly Dynamics in a Model of the Striatal Medium Spiny Neuron Network , 2012, Front. Syst. Neurosci..

[75]  Ian R. Wickersham,et al.  Cortical representations of olfactory input by trans-synaptic tracing , 2011, Nature.

[76]  M. Hasselmo,et al.  Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices. , 1998, Journal of neurophysiology.

[77]  M. Luskin,et al.  The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb , 1983, The Journal of comparative neurology.

[78]  J. Isaacson,et al.  Odor Representations in Olfactory Cortex: “Sparse” Coding, Global Inhibition, and Oscillations , 2009, Neuron.

[79]  John G. Flanagan,et al.  Development of Continuous and Discrete Neural Maps , 2007, Neuron.

[80]  D. S. Zahm,et al.  Specificity in the efferent projections of the nucleus accumbens in the rat: Comparison of the rostral pole projection patterns with those of the core and shell , 1993, The Journal of comparative neurology.

[81]  S. R. Datta,et al.  Distinct representations of olfactory information in different cortical centres , 2011, Nature.

[82]  R. Broadwell Olfactory relationships of the telencephlaon and diencephalon in the rabbit. 1. An autoradiographic study of the efferent connections of the main and accessory olfactory bulbs , 1975, The Journal of comparative neurology.

[83]  Michael T Shipley,et al.  Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. , 2006, Seminars in cell & developmental biology.

[84]  N. Buonviso,et al.  Piriform cortex functional heterogeneity revealed by cellular responses to odours , 2003, The European journal of neuroscience.

[85]  W. Schultz Potential Vulnerabilities of Neuronal Reward, Risk, and Decision Mechanisms to Addictive Drugs , 2011, Neuron.

[86]  J. Rothwell Principles of Neural Science , 1982 .

[87]  S. Siegelbaum,et al.  Recurrent Circuitry Dynamically Shapes the Activation of Piriform Cortex , 2011, Neuron.

[88]  T. Robbins,et al.  Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. , 1978, Journal of comparative and physiological psychology.

[89]  S. Ikemoto Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex , 2007, Brain Research Reviews.

[90]  H. Knapp,et al.  The efferent connexions of the olfactory bulb in the frog: a study of degenerating unmyelinated fibres. , 1968, Journal of anatomy.

[91]  D. Wesson,et al.  Parallel Odor Processing by Two Anatomically Distinct Olfactory Bulb Target Structures , 2012, PloS one.

[92]  A. Puche,et al.  Development of the Islands of Calleja , 2013, Brain Research.

[93]  F. Macrides,et al.  Efferents and centrifugal afferents of the main and accessory olfactory bulbs in the hamster , 1978, Brain Research Bulletin.

[94]  C. Linster,et al.  Characterization of the synaptic properties of olfactory bulb projections. , 2004, Chemical senses.

[95]  Michael Leon,et al.  Single-unit analysis of postnatal olfactory learning: modified olfactory bulb output response patterns to learned attractive odors , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[96]  D. S. Zahm,et al.  The ventral striatopallidothalamic projection: I. The striatopallidal link originating in the striatal parts of the olfactory tubercle , 1987, The Journal of comparative neurology.

[97]  Michael X. Cohen,et al.  Neurocomputational models of basal ganglia function in learning, memory and choice , 2009, Behavioural Brain Research.

[98]  M. Hasselmo,et al.  Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition , 2011, Neuropsychopharmacology.

[99]  B. Bloch,et al.  D1 and D2 dopamine receptor gene expression in the rat striatum: Sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAS in distinct neuronal populations of the dorsal and ventral striatum , 1995, The Journal of comparative neurology.

[100]  C. W. G Clifford,et al.  Fundamental mechanisms of visual motion detection: models, cells and functions , 2002, Progress in Neurobiology.

[101]  T. A. Harrison,et al.  Discrimination among odorants by single neurons of the rat olfactory bulb. , 1989, Journal of neurophysiology.

[102]  Dan D. Stettler,et al.  Driving Opposing Behaviors with Ensembles of Piriform Neurons , 2011, Cell.

[103]  Minmin Luo,et al.  Diverse Patterns of Odor Representation by Neurons in the Anterior Piriform Cortex of Awake Mice , 2010, The Journal of Neuroscience.

[104]  Julie Chapuis,et al.  Cholinergic modulation of olfactory pattern separation , 2013, Neuroscience Letters.

[105]  Z. Mainen,et al.  Early events in olfactory processing. , 2006, Annual review of neuroscience.

[106]  K. Gale,et al.  Subcortical structures and pathways involved in convulsive seizure generation. , 1992, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[107]  M. Hasselmo,et al.  Modulation of associative memory function in a biophysical simulation of rat piriform cortex. , 1994, Journal of neurophysiology.

[108]  D James Surmeier,et al.  Recurrent Collateral Connections of Striatal Medium Spiny Neurons Are Disrupted in Models of Parkinson's Disease , 2008, The Journal of Neuroscience.

[109]  T. Sejnowski,et al.  Temporal Processing in the Olfactory System: Can We See a Smell? , 2013, Neuron.

[110]  T. Cutforth,et al.  Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons , 2011, Nature.

[111]  R Perez,et al.  Neural mechanisms underlying stereoscopic vision , 1998, Progress in Neurobiology.

[112]  Morten L. Kringelbach,et al.  The Olfactory Cortex , 2015 .

[113]  Minmin Luo,et al.  Precise Circuitry Links Bilaterally Symmetric Olfactory Maps , 2008, Neuron.

[114]  Gordon M. Shepherd,et al.  The Olfactory Bulb , 1988 .

[115]  Donald A Wilson,et al.  Separate encoding of identity and similarity of complex familiar odors in piriform cortex , 2006, Proceedings of the National Academy of Sciences.

[116]  L. Heimer,et al.  Synaptic distribution of centripetal and centrifugal nerve fibres in the olfactory system of the rat. An experimental anatomical study. , 1968, Journal of anatomy.

[117]  M. Hasselmo,et al.  Modulation of inhibitory synaptic potentials in the piriform cortex. , 1999, Journal of neurophysiology.

[118]  Norimitsu Suzuki,et al.  Two Layers of Synaptic Processing by Principal Neurons in Piriform Cortex , 2011, The Journal of Neuroscience.

[119]  Talia N. Lerner,et al.  Neuromodulatory control of striatal plasticity and behavior , 2011, Current Opinion in Neurobiology.

[120]  J. W. Scott,et al.  The organization of projections from the olfactory bulb to the piriform cortex and olfactory tubercle in the rat , 1980, The Journal of comparative neurology.

[121]  M. Roitman,et al.  Nucleus Accumbens Neurons Are Innately Tuned for Rewarding and Aversive Taste Stimuli, Encode Their Predictors, and Are Linked to Motor Output , 2005, Neuron.

[122]  J. Fallon,et al.  The islands of calleja: Organization and connections , 1978, The Journal of comparative neurology.

[123]  M. Hasselmo,et al.  Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. , 1992, Journal of neurophysiology.

[124]  C. Gerfen,et al.  Modulation of striatal projection systems by dopamine. , 2011, Annual review of neuroscience.

[125]  G M Shepherd,et al.  Emerging principles of molecular signal processing by mitral/tufted cells in the olfactory bulb. , 1994, Seminars in cell biology.

[126]  Steven S. Vogel,et al.  Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation , 2013, Nature.

[127]  Norimitsu Suzuki,et al.  INHIBITORY INTERNEURONS IN THE PIRIFORM CORTEX , 2007, Clinical and experimental pharmacology & physiology.

[128]  Oliver W. Layton,et al.  Dynamic coding of border-ownership in visual cortex. , 2012, Journal of vision.

[129]  Norimitsu Suzuki,et al.  Distinctive classes of GABAergic interneurons provide layer-specific phasic inhibition in the anterior piriform cortex. , 2010, Cerebral cortex.

[130]  A. Reeves,et al.  Behavioral asymmetries following olfactory tubercle lesions in cats. , 1977, Brain, behavior and evolution.

[131]  R. Axel,et al.  The molecular logic of smell. , 1995, Scientific American.

[132]  D. Lovinger,et al.  Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill , 2009, Nature Neuroscience.

[133]  J. Girault,et al.  Opposing Patterns of Signaling Activation in Dopamine D1 and D2 Receptor-Expressing Striatal Neurons in Response to Cocaine and Haloperidol , 2008, The Journal of Neuroscience.