A Calculus for Log-Convex Interference Functions

The behavior of certain interference-coupled multiuser systems can be modeled by means of logarithmically convex (log-convex) interference functions. In this paper, we show fundamental properties of this framework. A key observation is that any log-convex interference function can be expressed as an optimum over elementary log-convex interference functions. The results also contribute to a better understanding of certain quality-of-service (QoS) tradeoff regions, which can be expressed as sublevel sets of log-convex interference functions. We analyze the structure of the QoS region and provide conditions for the achievability of boundary points. The proposed framework of log-convex interference functions generalizes the classical linear interference model, which is closely connected with the theory of irreducible nonnegative matrices (Perron-Frobenius theory). We discuss some possible applications in robust communication, cooperative game theory, and max-min fairness.

[1]  Roy D. Yates,et al.  A Framework for Uplink Power Control in Cellular Radio Systems , 1995, IEEE J. Sel. Areas Commun..

[2]  Daniel Pérez Palomar,et al.  Power Control By Geometric Programming , 2007, IEEE Transactions on Wireless Communications.

[3]  Holger Boche,et al.  A Superlinearly and Globally Convergent Algorithm for Power Control and Resource Allocation With General Interference Functions , 2008, IEEE/ACM Transactions on Networking.

[4]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[5]  Slawomir Stanczak,et al.  The infeasible SIR region is not a convex set , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[6]  Emeric Deutsch,et al.  Derivatives of the Perron root at an essentially nonnegative matrix and the group inverse of an M-matrix☆ , 1984 .

[7]  H. Boche,et al.  The Kullback–Leibler Divergence and Nonnegative Matrices , 2006, IEEE Transactions on Information Theory.

[8]  Hans Peters,et al.  Axiomatic bargaining game theory , 1992, Theory and decision library C.

[9]  Andrea J. Goldsmith,et al.  Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels , 2003, IEEE Trans. Inf. Theory.

[10]  Roy Yates,et al.  Power control leased on bit error rate (BER) measurements , 1995, Proceedings of MILCOM '95.

[11]  Bjorn Ottersten,et al.  Handbook of Antennas in Wireless Communications , 2018 .

[12]  Holger Boche,et al.  Non-symmetric Nash bargaining solution for resource allocation in wireless networks and connection to interference calculus , 2007, 2007 15th European Signal Processing Conference.

[13]  Björn E. Ottersten,et al.  On downlink beamforming with indefinite shaping constraints , 2006, IEEE Transactions on Signal Processing.

[14]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[15]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[16]  F. R. Gantmakher The Theory of Matrices , 1984 .

[17]  Slawomir Stanczak,et al.  The Infeasible SIR Region Is Not a Convex Set , 2006, IEEE Transactions on Communications.

[18]  Slawomir Stanczak,et al.  Unifying View on Min-Max Fairness, Max-Min Fairness, and Utility Optimization in Cellular Networks , 2007, EURASIP J. Wirel. Commun. Netw..

[19]  Slawomir Stanczak,et al.  Convexity of some feasible QoS regions and asymptotic behavior of the minimum total power in CDMA systems , 2004, IEEE Transactions on Communications.

[20]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[21]  Slawomir Stanczak,et al.  Resource Allocation in Wireless Networks: Theory and Algorithms , 2006, Lecture Notes in Computer Science.

[22]  Roy D. Yates,et al.  Rate of convergence for minimum power assignment algorithms in cellular radio systems , 1998, Wirel. Networks.

[23]  Leandros Tassiulas,et al.  Joint optimal power control and beamforming in wireless networks using antenna arrays , 1998, IEEE Trans. Commun..

[24]  Ekram Hossain,et al.  Radio Resource Management in Wireless Networks , .

[25]  Xiaoxin Qiu,et al.  On the performance of adaptive modulation in cellular systems , 1999, IEEE Trans. Commun..

[26]  Holger Boche,et al.  Solution of the multiuser downlink beamforming problem with individual SINR constraints , 2004, IEEE Transactions on Vehicular Technology.

[27]  Shlomo Shamai,et al.  The capacity region of the Gaussian MIMO broadcast channel , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[28]  Shlomo Shamai,et al.  The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel , 2006, IEEE Transactions on Information Theory.

[29]  Shahram Shahbazpanahi,et al.  Robust Downlink Power Control in Wireless Cellular Systems , 2004, EURASIP J. Wirel. Commun. Netw..

[30]  Slawomir Stanczak,et al.  Strict convexity of the feasible log-SIR region , 2008, IEEE Transactions on Communications.

[31]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[32]  Holger Boche,et al.  The Structure of General Interference Functions and Applications , 2008, IEEE Transactions on Information Theory.

[33]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[34]  Holger Boche,et al.  On the Structure of the Multiuser QoS Region , 2007, IEEE Transactions on Signal Processing.

[35]  Slawomir Stanczak,et al.  Log-convexity of the minimum total power in CDMA systems with certain quality-of-service guaranteed , 2005, IEEE Transactions on Information Theory.

[36]  Holger Boche,et al.  Concave and Convex Interference Functions—General Characterizations and Applications , 2008, IEEE Transactions on Signal Processing.

[37]  Roy D. Yates,et al.  Adaptive power control and MMSE interference suppression , 1998, Wirel. Networks.

[38]  J. Nash THE BARGAINING PROBLEM , 1950, Classics in Game Theory.

[39]  Jens Zander,et al.  Performance of optimum transmitter power control in cellular radio systems , 1992 .

[40]  Chi Wan Sung Log-convexity property of the feasible SIR region in power-controlled cellular systems , 2002, IEEE Communications Letters.

[41]  Slawomir Stanczak,et al.  On the Convexity of Feasible QoS Regions , 2007, IEEE Transactions on Information Theory.

[42]  Roy D. Yates,et al.  Integrated power control and base station assignment , 1995 .

[43]  Rudolf Mathar,et al.  Power control, capacity, and duality of uplink and downlink in cellular CDMA systems , 2004, IEEE Transactions on Communications.

[44]  Stephen V. Hanly,et al.  An Algorithm for Combined Cell-Site Selection and Power Control to Maximize Cellular Spread Spectrum Capacity (Invited Paper) , 1995, IEEE J. Sel. Areas Commun..

[45]  Chi Wan Sung,et al.  Convergence theorem for a general class of power-control algorithms , 2001, IEEE Transactions on Communications.

[46]  L. C. Godara,et al.  Handbook of Antennas in Wireless Communications , 2001 .

[47]  Shlomo Shamai,et al.  On the achievable throughput of a multiantenna Gaussian broadcast channel , 2003, IEEE Transactions on Information Theory.

[48]  Holger Boche,et al.  QoS-Based Resource Allocation and Transceiver Optimization , 2005, Found. Trends Commun. Inf. Theory.

[49]  Holger Boche,et al.  Robust Resource Allocation , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[50]  S. Koskie,et al.  SIR-Based Power Control Algorithms for Wireless CDMA Networks : An Overview ∗ , .