Spacetimes of Weyl and Ricci type N in higher dimensions

We study the geometrical properties of null congruences generated by an aligned null direction of the Weyl tensor (WAND) in spacetimes of Weyl and Ricci type N (possibly with a non-vanishing cosmological constant) in an arbitrary dimension. We prove that a type N Ricci tensor and a type III or N Weyl tensor have to be aligned. In such spacetimes, the multiple WAND has to be geodetic. For spacetimes with type N aligned Weyl and Ricci tensors, the canonical form of the optical matrix in the twisting and non-twisting cases is derived and the dependence of the Weyl and the Ricci tensors and Ricci rotation coefficients on the affine parameter of the geodetic null congruence generated by the WAND is obtained.

[1]  H. Reall,et al.  Twisting algebraically special solutions in five dimensions , 2015, 1511.02238.

[2]  H. Reall,et al.  Uniqueness of the Kerr–de Sitter Spacetime as an Algebraically Special Solution in Five Dimensions , 2015, 1501.02837.

[3]  M. Gurses,et al.  AdS-Plane wave and pp-wave solutions of generic gravity theories , 2014, 1407.5301.

[4]  S. Hervik,et al.  Anti-de Sitter-wave solutions of higher derivative theories. , 2013, Physical review letters.

[5]  M. Ortaggio,et al.  Algebraic classification of higher dimensional spacetimes based on null alignment , 2012, 1211.7289.

[6]  H. Reall,et al.  On algebraically special vacuum spacetimes in five dimensions , 2012, 1211.5957.

[7]  A. Pravdov'a,et al.  On the Goldberg–Sachs theorem in higher dimensions in the non-twisting case , 2012, 1211.2660.

[8]  H. Reall,et al.  On a five-dimensional version of the Goldberg–Sachs theorem , 2012, 1205.1119.

[9]  S. Siklos Exact Space-Times in Einstein's General Relativity, by Jerry B. Griffiths and Jiří Podolský , 2012 .

[10]  K. Lake Exact Space-Times in Einstein's General Relativity , 2010 .

[11]  V. Pravda,et al.  Kerr–Schild spacetimes with an (A)dS background , 2010, 1009.1727.

[12]  M. Ortaggio,et al.  Type III and N Einstein spacetimes in higher dimensions: general properties , 2010, 1005.2377.

[13]  H. Reall,et al.  Generalization of the Geroch–Held–Penrose formalism to higher dimensions , 2010, 1002.4826.

[14]  M. Ortaggio,et al.  Asymptotically flat, algebraically special spacetimes in higher dimensions , 2009, 0907.1780.

[15]  M. Ortaggio,et al.  Higher dimensional Kerr–Schild spacetimes , 2008, 0808.2165.

[16]  M. Ortaggio,et al.  Type D Einstein spacetimes in higher dimensions , 2007, 0704.0435.

[17]  R. Milson,et al.  Bianchi identities in higher dimensions (vol 21, pg 2873, 2004) , 2007 .

[18]  M. Ortaggio,et al.  Ricci identities in higher dimensions , 2007, gr-qc/0701150.

[19]  V. Pravda On the classification of the Weyl tensor in higher dimensions , 2006 .

[20]  A. Coley,et al.  Higher dimensional VSI spacetimes , 2006, gr-qc/0611019.

[21]  P. Negi,et al.  Exact Solutions of Einstein's Field Equations , 2004, gr-qc/0401024.

[22]  R. Milson,et al.  Bianchi identities in higher dimensions , 2004, gr-qc/0401013.

[23]  R. Milson,et al.  ALIGNMENT AND ALGEBRAICALLY SPECIAL TENSORS IN LORENTZIAN GEOMETRY , 2004, gr-qc/0401010.

[24]  J. Griffiths,et al.  Generalized Kundt waves and their physical interpretation , 2003, gr-qc/0310083.

[25]  J. Plebański,et al.  On certain twisting type-N solutions of Einstein equations with pure radiation energy-momentum tensor and nonvanishing shear , 2002 .

[26]  J. Plebański,et al.  LINEAR SUPERPOSITION OF TWO TYPE-N NONLINEAR GRAVITONS , 1998 .

[27]  P. Wils Homogeneous and conformally Ricci flat pure radiation fields , 1989 .

[28]  I. Robinson,et al.  Plane‐fronted gravitational and electromagnetic waves in spaces with cosmological constant , 1985 .

[29]  J Podolský,et al.  Generalized Kundt waves and their physical interpretation , 2003 .