What is a Logic
暂无分享,去创建一个
[1] Andrei Popescu,et al. A Semantic Approach to Interpolation , 2006, FoSSaCS.
[2] Razvan Diaconescu. An Institution-independent Proof of Craig Interpolation Theorem , 2004, Stud Logica.
[3] Joseph A. Goguen,et al. Institutions: abstract model theory for specification and programming , 1992, JACM.
[4] José Meseguer,et al. General Logics , 2006 .
[5] Razvan Diaconescu,et al. Abstract Beth definability in institutions , 2006, J. Symb. Log..
[6] Béziau J.-Y.,et al. What is propositional classical logic? (a Study in Universal logic) , 2001 .
[7] Tomasz Borzyszkowski. Generalized interpolation in CASL , 2000, Inf. Process. Lett..
[8] Razvan Diaconescu. Proof Systems for Institutional Logic , 2006, J. Log. Comput..
[9] Andrei Popescu,et al. An Institution-Independent Proof of the Robinson Consistency Theorem , 2007, Stud Logica.
[10] J. Lambek,et al. Introduction to higher order categorical logic , 1986 .
[11] Andrzej Tarlecki,et al. Bits and Pieces of the Theory of Institutions , 1985, ADT.
[12] T. S. E. Maibaum,et al. On a generalized modularization theorem , 2000, Inf. Process. Lett..
[13] Razvan Diaconescu,et al. Institution-independent Ultraproducts , 2002, Fundam. Informaticae.
[14] Razvan Diaconescu. Grothendieck Institutions , 2002, Appl. Categorical Struct..
[15] Grigore Rosu,et al. Institution Morphisms , 2013, Formal Aspects of Computing.
[16] R. Diaconescu. Institution-independent model theory , 2008 .
[17] Michel Bidoit,et al. Behavioural Satisfaction and Equivalence in Concrete Model Categories , 1996, CAAP.
[18] Joseph A. Goguen,et al. Towards an Algebraic Semantics for the Object Paradigm , 1992, COMPASS/ADT.
[19] Corina Ĉırstea. Institutionalizing Coalgebraic Modal Logic , 2002, CMCS.
[20] José Luiz Fiadeiro,et al. Mirror, Mirror in my Hand: A Duality between Specifications and Models of Process Behaviour , 1996, Math. Struct. Comput. Sci..
[21] Stephen Pollard. Homeomorphism and the Equivalence of Logical Systems , 1998, Notre Dame J. Formal Log..
[22] Till Mossakowski,et al. Type Class Polymorphism in an Institutional Framework , 2004, WADT.
[23] Razvan Diaconescu,et al. Herbrand theorems in arbitrary institutions , 2004, Inf. Process. Lett..
[24] Andrzej Tarlecki,et al. On the Existence of Free Models in Abstract Algebraic Institutuons , 1985, Theor. Comput. Sci..
[25] Donald Sannella,et al. Specifications in an Arbitrary Institution , 1988, Inf. Comput..
[26] Horst Herrlich,et al. Abstract and concrete categories , 1990 .
[27] Michel Bidoit,et al. On the Integration of Observability and Reachability Concepts , 2002, FoSSaCS.
[28] G. L.. Collected Papers , 1912, Nature.
[29] P. Rodenburg,et al. A simple algebraic proof of the equational interpolation theorem , 1991 .
[30] F. W. Lawvere,et al. FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[31] Tomasz Borzyszkowski. Generalized Interpolation in First Order Logic , 2005, Fundam. Informaticae.
[32] Razvan Diaconescu. Jewels of Institution-Independent Model Theory , 2006, Essays Dedicated to Joseph A. Goguen.
[33] S. Lane. Categories for the Working Mathematician , 1971 .
[34] Till Mossakowski. Specifications in an Arbitrary Institution with Symbols , 1999, WADT.
[35] Andrzej Tarlecki,et al. Quasi-varieties in Abstract Algebraic Institutions , 1986, J. Comput. Syst. Sci..
[36] Laurel Howe. Mirror , 2004 .
[37] Alasdair Urquhart,et al. Synonymous Logics , 2003, J. Philos. Log..
[38] K. J. Barwise,et al. Axioms for abstract model theory , 1974 .
[39] Will Tracz,et al. An implementation-oriented semantics for module composition , 2000 .
[40] Razvan Diaconescu. Elementary Diagrams in Institutions , 2004, J. Log. Comput..
[41] Tomasz Borzyszkowski. Moving Specification Structures Between Logical Systems , 1998, WADT.