What is a Logic

This paper builds on the theory of institutions, a version of abstract model theory that emerged in computer science studies of software specification and semantics. To handle proof theory, our institutions use an extension of traditional categorical logic with sets of sentences as objects instead of single sentences, and with morphisms representing proofs as usual. A natural equivalence relation on institutions is defined such that its equivalence classes are logics. Several invariants are defined for this equivalence, including a Lindenbaum algebra construction, its generalization to a Lindenbaum category construction that includes proofs, and model cardinality spectra; these are used in some examples to show logics inequivalent. Generalizations of familiar results from first order to arbitrary logics are also discussed, including Craig interpolation and Beth definability.

[1]  Andrei Popescu,et al.  A Semantic Approach to Interpolation , 2006, FoSSaCS.

[2]  Razvan Diaconescu An Institution-independent Proof of Craig Interpolation Theorem , 2004, Stud Logica.

[3]  Joseph A. Goguen,et al.  Institutions: abstract model theory for specification and programming , 1992, JACM.

[4]  José Meseguer,et al.  General Logics , 2006 .

[5]  Razvan Diaconescu,et al.  Abstract Beth definability in institutions , 2006, J. Symb. Log..

[6]  Béziau J.-Y.,et al.  What is propositional classical logic? (a Study in Universal logic) , 2001 .

[7]  Tomasz Borzyszkowski Generalized interpolation in CASL , 2000, Inf. Process. Lett..

[8]  Razvan Diaconescu Proof Systems for Institutional Logic , 2006, J. Log. Comput..

[9]  Andrei Popescu,et al.  An Institution-Independent Proof of the Robinson Consistency Theorem , 2007, Stud Logica.

[10]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[11]  Andrzej Tarlecki,et al.  Bits and Pieces of the Theory of Institutions , 1985, ADT.

[12]  T. S. E. Maibaum,et al.  On a generalized modularization theorem , 2000, Inf. Process. Lett..

[13]  Razvan Diaconescu,et al.  Institution-independent Ultraproducts , 2002, Fundam. Informaticae.

[14]  Razvan Diaconescu Grothendieck Institutions , 2002, Appl. Categorical Struct..

[15]  Grigore Rosu,et al.  Institution Morphisms , 2013, Formal Aspects of Computing.

[16]  R. Diaconescu Institution-independent model theory , 2008 .

[17]  Michel Bidoit,et al.  Behavioural Satisfaction and Equivalence in Concrete Model Categories , 1996, CAAP.

[18]  Joseph A. Goguen,et al.  Towards an Algebraic Semantics for the Object Paradigm , 1992, COMPASS/ADT.

[19]  Corina Ĉırstea Institutionalizing Coalgebraic Modal Logic , 2002, CMCS.

[20]  José Luiz Fiadeiro,et al.  Mirror, Mirror in my Hand: A Duality between Specifications and Models of Process Behaviour , 1996, Math. Struct. Comput. Sci..

[21]  Stephen Pollard Homeomorphism and the Equivalence of Logical Systems , 1998, Notre Dame J. Formal Log..

[22]  Till Mossakowski,et al.  Type Class Polymorphism in an Institutional Framework , 2004, WADT.

[23]  Razvan Diaconescu,et al.  Herbrand theorems in arbitrary institutions , 2004, Inf. Process. Lett..

[24]  Andrzej Tarlecki,et al.  On the Existence of Free Models in Abstract Algebraic Institutuons , 1985, Theor. Comput. Sci..

[25]  Donald Sannella,et al.  Specifications in an Arbitrary Institution , 1988, Inf. Comput..

[26]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[27]  Michel Bidoit,et al.  On the Integration of Observability and Reachability Concepts , 2002, FoSSaCS.

[28]  G. L. Collected Papers , 1912, Nature.

[29]  P. Rodenburg,et al.  A simple algebraic proof of the equational interpolation theorem , 1991 .

[30]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Tomasz Borzyszkowski Generalized Interpolation in First Order Logic , 2005, Fundam. Informaticae.

[32]  Razvan Diaconescu Jewels of Institution-Independent Model Theory , 2006, Essays Dedicated to Joseph A. Goguen.

[33]  S. Lane Categories for the Working Mathematician , 1971 .

[34]  Till Mossakowski Specifications in an Arbitrary Institution with Symbols , 1999, WADT.

[35]  Andrzej Tarlecki,et al.  Quasi-varieties in Abstract Algebraic Institutions , 1986, J. Comput. Syst. Sci..

[36]  Laurel Howe Mirror , 2004 .

[37]  Alasdair Urquhart,et al.  Synonymous Logics , 2003, J. Philos. Log..

[38]  K. J. Barwise,et al.  Axioms for abstract model theory , 1974 .

[39]  Will Tracz,et al.  An implementation-oriented semantics for module composition , 2000 .

[40]  Razvan Diaconescu Elementary Diagrams in Institutions , 2004, J. Log. Comput..

[41]  Tomasz Borzyszkowski Moving Specification Structures Between Logical Systems , 1998, WADT.