Edge-Based Dynamic Scheduling for Belief-Propagation Decoding of LDPC and RS Codes

This paper presents two low-complexity edge-based scheduling schemes, referred to as the e-Flooding and e-Shuffled schedules, for the belief-propagation (BP) decoding of low-density parity-check and Reed–Solomon codes. The proposed schedules selectively update the edges of the code graph based on the run-time reliability of variable and check nodes. Specifically, new message update is propagated exclusively along the unreliable edges of the code graph. This reduces the decoding complexity of BP algorithm as only a partial set of message updates is computed per decoding iteration. Besides, restricting the flow of message updates may also precludes the occurrence of some short graph cycles, which helps to preserve the BP message independence at certain variable and check nodes. Using numerical simulations, it is shown that the proposed edge-based schedules reduce the BP decoding complexity by more than 90% compared with the prior-art BP schedules, while simultaneously improving the error-rate performance, at medium-to-high signal-to-noise ratio over additive white Gaussian noise channel.

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  Huang-Chang Lee,et al.  Iterative soft-decision decoding of Reed-Solomon codes using informed dynamic scheduling , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[3]  Yi Gong,et al.  Effective Informed Dynamic Scheduling for Belief Propagation Decoding of LDPC Codes , 2011, IEEE Transactions on Communications.

[4]  Li Ping,et al.  Low-Complexity Soft-Decoding Algorithms for Reed–Solomon Codes—Part II: Soft-Input Soft-Output Iterative Decoding , 2010, IEEE Transactions on Information Theory.

[5]  Marc P. C. Fossorier,et al.  Shuffled iterative decoding , 2005, IEEE Transactions on Communications.

[6]  William Ryan,et al.  Channel Codes: Classical and Modern , 2009 .

[7]  Krishna R. Narayanan,et al.  Iterative soft decoding of Reed-Solomon codes , 2004, IEEE Communications Letters.

[8]  William Ryan,et al.  Channel Codes by William Ryan , 2009 .

[9]  Huang-Chang Lee,et al.  LDPC Decoding Scheduling for Faster Convergence and Lower Error Floor , 2014, IEEE Transactions on Communications.

[10]  Dongho Kim,et al.  Serial scheduling algorithm of LDPC decoding for multimedia transmission , 2012, IEEE international Symposium on Broadband Multimedia Systems and Broadcasting.

[11]  Yong Liang Guan,et al.  Improving the Belief-Propagation Convergence of Irregular LDPC Codes Using Column-Weight Based Scheduling , 2015, IEEE Communications Letters.

[12]  Hideki Imai,et al.  Reduced complexity iterative decoding of low-density parity check codes based on belief propagation , 1999, IEEE Trans. Commun..

[13]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[14]  Xingcheng Liu,et al.  Improved Decoding Algorithm of Serial Belief Propagation With a Stop Updating Criterion for LDPC Codes and Applications in Patterned Media Storage , 2013, IEEE Transactions on Magnetics.

[15]  Simon Litsyn,et al.  Lazy scheduling forLDPC decoding , 2007, IEEE Communications Letters.

[16]  M. B. Damle,et al.  Comparative Analysis of Array Multiplier Using Different Logic Styles , 2013 .

[17]  Gerhard Fettweis,et al.  Reduced Complexity LDPC Decoding using Forced Convergence , 2004 .

[18]  Richard D. Wesel,et al.  LDPC Decoders with Informed Dynamic Scheduling , 2010, IEEE Transactions on Communications.

[19]  Rodrigo C. de Lamare,et al.  Knowledge-aided informed dynamic scheduling for LDPC decoding , 2015, 2015 IEEE International Conference on Communication Workshop (ICCW).

[20]  Branka Vucetic,et al.  Low Complexity Soft Decision Decoding Algorithms for Reed-Solomon Codes , 2001 .

[21]  Yuanbin Zhang,et al.  Variable-Node-Based Dynamic Scheduling Strategy for Belief-Propagation Decoding of LDPC Codes , 2015, IEEE Communications Letters.

[22]  Hua Xiao,et al.  Graph-based message-passing schedules for decoding LDPC codes , 2004, IEEE Transactions on Communications.

[23]  Ye Jin,et al.  Check-node lazy scheduling approach for layered belief propagation decoding algorithm , 2014 .

[24]  Yong Liang Guan,et al.  Check Node Reliability-Based Scheduling for BP Decoding of Non-Binary LDPC Codes , 2013, IEEE Transactions on Communications.

[25]  Simon Litsyn,et al.  Efficient Serial Message-Passing Schedules for LDPC Decoding , 2007, IEEE Transactions on Information Theory.

[26]  Krishna R. Narayanan,et al.  Iterative Soft-Input Soft-Output Decoding of Reed–Solomon Codes by Adapting the Parity-Check Matrix , 2005, IEEE Transactions on Information Theory.

[27]  Khaled A. S. Abdel-Ghaffar,et al.  Two reliability-based iterative majority-logic decoding algorithms for LDPC codes , 2009, IEEE Transactions on Communications.

[28]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[29]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[30]  Huang-Chang Lee,et al.  Two Informed Dynamic Scheduling Strategies for Iterative LDPC Decoders , 2013, IEEE Transactions on Communications.

[31]  D.E. Hocevar,et al.  A reduced complexity decoder architecture via layered decoding of LDPC codes , 2004, IEEE Workshop onSignal Processing Systems, 2004. SIPS 2004..

[32]  Amir H. Banihashemi,et al.  Decoding low-density parity-check codes with probabilistic scheduling , 2001, IEEE Communications Letters.