IMC based Robust PID design: Tuning guidelines and automatic tuning

Abstract This communication addresses the problem of tuning a PID controller for step response. The tuning is based upon a First Order Plus Time Delay (FOPTD) model and aims to achieve a step response specification while taking into account robustness considerations. The industrial ISA-PID formulation is chosen. A tuning rule is derived first where the four parameters of the ISA-PID are determined by means of two new parameters: one parameter is related to the desired closed-loop time constant and the other one to the robustness level. On a second step, these two parameters are set to a fixed value in order to get a simple and automatic rule that directly gives the controller parameters in terms of the process model parameters. The proposed automatic tuning rule is compared with other known tunings.

[1]  G. Zames,et al.  Feedback, minimax sensitivity, and optimal robustness , 1983 .

[2]  Min-Sen Chiu,et al.  Robust PID controller design via LMI approach , 2002 .

[3]  Shankar P. Bhattacharyya,et al.  New results on the synthesis of PID controllers , 2002, IEEE Trans. Autom. Control..

[4]  Hsueh-Chia Chang,et al.  A theoretical examination of closed-loop properties and tuning methods of single-loop PI controllers , 1987 .

[5]  K. Åström,et al.  Revisiting the Ziegler-Nichols step response method for PID control , 2004 .

[6]  K.J. ÅSTRÖM,et al.  Design of PI Controllers based on Non-Convex Optimization , 1998, Autom..

[7]  D. Sarason Generalized interpolation in , 1967 .

[8]  Sigurd Skogestad,et al.  Simple analytic rules for model reduction and PID controller tuning , 2003 .

[9]  K. L. Chien,et al.  On the Automatic Control of Generalized Passive Systems , 1952, Journal of Fluids Engineering.

[10]  Ming-Tzu Ho,et al.  PID controller design for robust performance , 2003, IEEE Trans. Autom. Control..

[11]  R. Toscano A simple robust PI/PID controller design via numerical optimization approach , 2004 .

[12]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[13]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[14]  Sunwon Park,et al.  PID controller tuning for desired closed‐loop responses for SI/SO systems , 1998 .

[15]  Alf Isaksson,et al.  Derivative filter is an integral part of PID design , 2002 .

[16]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[17]  Bor-Sen Chen,et al.  Controller synthesis of optimal sensitivity: multivariable case , 1984 .

[18]  N. Munro,et al.  PID controllers: recent tuning methods and design to specification , 2002 .

[19]  Tong Heng Lee,et al.  PI Tuning in Terms of Gain and Phase Margins , 1998, Autom..

[20]  Ramon Vilanova,et al.  Model reference control in two degree of freedom control systems: adaptive min-max approach , 1999 .

[21]  M. Morari,et al.  Internal model control: PID controller design , 1986 .

[22]  William L. Luyben,et al.  Effect of derivative algorithm and tuning selection on the PID control of dead-time processes , 2001 .

[23]  Pedro Albertos,et al.  Iterative Identification and Control , 2002, Springer London.

[24]  C. Hang,et al.  Refinements of the Ziegler-Nichols tuning formula , 1991 .