Quantitative phase analyses of biomedical pyrophosphate-bearing monetite and brushite cements by solid-state NMR and powder XRD

[1]  H. Engqvist,et al.  The Monetite Structure Probed by Advanced Solid-State NMR Experimentation at Fast Magic-Angle Spinning , 2019, International journal of molecular sciences.

[2]  M. Edén,et al.  A unified 23 Na NMR chemical shift correlation with structural parameters in multicomponent silicate‐based glasses , 2019, Journal of the American Ceramic Society.

[3]  P. Procter,et al.  Adhesive Cements That Bond Soft Tissue Ex Vivo , 2019, Materials.

[4]  H. Engqvist,et al.  Advanced solid-state 1H/31P NMR characterization of pyrophosphate-doped calcium phosphate cements for biomedical applications: The structural role of pyrophosphate , 2019, Ceramics International.

[5]  Christopher D Spicer,et al.  A Novel Class of Injectable Bioceramics That Glue Tissues and Biomaterials , 2018, Materials.

[6]  Ken Gall,et al.  Bioinspired Mineral–Organic Bioresorbable Bone Adhesive , 2018, Advanced healthcare materials.

[7]  M. Vallet‐Regí,et al.  Proton Environments in Biomimetic Calcium Phosphates Formed from Mesoporous Bioactive CaO–SiO2–P2O5 Glasses in Vitro: Insights from Solid-State NMR , 2017, The journal of physical chemistry. C, Nanomaterials and interfaces.

[8]  C. Rey,et al.  From crystalline to amorphous calcium pyrophosphates: A solid state Nuclear Magnetic Resonance perspective. , 2016, Acta biomaterialia.

[9]  M. Edén Chapter Four – 27Al NMR Studies of Aluminosilicate Glasses , 2015 .

[10]  M. Edén,et al.  Low-power broadband homonuclear dipolar recoupling in MAS NMR by two-fold symmetry pulse schemes for magnetization transfers and double-quantum excitation. , 2015, Journal of magnetic resonance.

[11]  Y. Millot,et al.  Discrimination of Surface and Bulk Structure of Crystalline Hydroxyapatite Nanoparticles by NMR , 2015 .

[12]  M. Edén,et al.  Na/Ca Intermixing around Silicate and Phosphate Groups in Bioactive Phosphosilicate Glasses Revealed by Heteronuclear Solid-State NMR and Molecular Dynamics Simulations. , 2015, The journal of physical chemistry. B.

[13]  D. Holland,et al.  Cation substitution in β-tricalcium phosphate investigated using multi-nuclear, solid-state NMR , 2014 .

[14]  J. Skepper,et al.  Citrate bridges between mineral platelets in bone , 2014, Proceedings of the National Academy of Sciences.

[15]  Y. Mou,et al.  Hydrogen bond formation between citrate and phosphate ions in spherulites of fluorapatite. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[16]  L. Grover,et al.  The effect of amorphous pyrophosphate on calcium phosphate cement resorption and bone generation. , 2013, Biomaterials.

[17]  J. Barralet,et al.  Dicalcium phosphate cements: brushite and monetite. , 2012, Acta biomaterialia.

[18]  L. Grover,et al.  Enhanced stability and local structure in biologically relevant amorphous materials containing pyrophosphate , 2011 .

[19]  L. Grover,et al.  Silver-doped calcium phosphate cements with antimicrobial activity. , 2011, Acta biomaterialia.

[20]  F. Mauri,et al.  High-resolution solid state NMR experiments for the characterization of calcium phosphate biomaterials and biominerals , 2011 .

[21]  F. Mauri,et al.  First‐principles calculations of NMR parameters for phosphate materials , 2010, Magnetic resonance in chemistry : MRC.

[22]  Sergey V Dorozhkin Amorphous calcium (ortho)phosphates. , 2010, Acta biomaterialia.

[23]  X. Xue,et al.  Proton Distributions and Hydrogen Bonding in Crystalline and Glassy Hydrous Silicates and Related Inorganic Materials: Insights from High-Resolution Solid-State Nuclear Magnetic Resonance Spectroscopy , 2009 .

[24]  A. Legrand,et al.  (31)P Solid-State NMR study of the chemical setting process of a dual-paste injectable brushite cements. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[25]  M. Edén,et al.  Efficient symmetry-based homonuclear dipolar recoupling of quadrupolar spins: double-quantum NMR correlations in amorphous solids. , 2008, Physical chemistry chemical physics : PCCP.

[26]  A. Hakeem,et al.  Nitrogen-rich La–Si–Al–O–N oxynitride glass structures probed by solid state NMR , 2008 .

[27]  F. Mauri,et al.  Calcium Phosphates and Hydroxyapatite: Solid-State NMR Experiments and First-Principles Calculations , 2007 .

[28]  F. Hlel,et al.  Investigation of Phosphorus Site Condensation in CaHPO4 by Analysis of 31P MAS-NMR Tensor and X-Ray Powder Patterns , 2006 .

[29]  Michael D Morris,et al.  Three structural roles for water in bone observed by solid-state NMR. , 2006, Biophysical journal.

[30]  M. Epple,et al.  A solid‐state NMR investigation of the structure of nanocrystalline hydroxyapatite , 2006, Magnetic resonance in chemistry : MRC.

[31]  L. Grover,et al.  Cement Formulations in the Calcium Phosphate H2O-H3PO4-H4P2O7 System , 2005 .

[32]  M. Yashima,et al.  Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction , 2003 .

[33]  J C Knowles,et al.  In vitro ageing of brushite calcium phosphate cement. , 2003, Biomaterials.

[34]  A. Samoson,et al.  1H MAS and 1H → 31P CP/MAS NMR Study of Human Bone Mineral , 2003, Calcified Tissue International.

[35]  A. Lyakhov,et al.  Structure refinement for Na2H2P2O7 from X-ray powder diffraction data , 2002 .

[36]  R. Guidoin,et al.  Mineralization followup with the use of NMR spectroscopy and others. , 2002, Journal of biomedical materials research.

[37]  H. J. Jakobsen,et al.  Solid-state 13 C and 31 P NMR analysis of urinary stones. , 2000, The Journal of urology.

[38]  B. Fung,et al.  An improved broadband decoupling sequence for liquid crystals and solids. , 2000, Journal of magnetic resonance.

[39]  A. Legrand,et al.  Nuclear magnetic resonance spectroscopy of bone substitutes. , 1999, Bone.

[40]  A. Rondeau,et al.  A Crystallographic Study of the Sorption of Cadmium on Calcium Hydroxyapatites: Incidence of Cationic Vacancies , 1996 .

[41]  M. Bohner,et al.  Effects of Sulfate, Pyrophosphate, and Citrate Ions on the Physicochemical Properties of Cements Made of β‐Tricalcium Phosphate‐Phosphoric Acid‐Water Mixtures , 1996 .

[42]  B. Schnabel,et al.  The Influence of Short-Range Geometry on the 31P Chemical-Shift Tensor in Protonated . Phosphates , 1994 .

[43]  Steven O. Smith,et al.  Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning NMR , 1994 .

[44]  C. Rey,et al.  Solid state NMR to study calcium phosphate ceramics , 1990 .

[45]  J. Lemaître,et al.  Calcium phosphate cements: study of the beta-tricalcium phosphate--monocalcium phosphate system. , 1989, Biomaterials.

[46]  H. Eckert,et al.  Hydrogen environments in calcium phosphates: proton MAS NMR at high spinning speeds , 1987 .

[47]  R. Kirkpatrick,et al.  Structure and Cation Effects on Phosphorus-31 NMR Chemical Shifts and Chemical-Shift Anisotropies of Orthophosphates* , 1986 .

[48]  M. Glimcher,et al.  Solid-state phosphorus-31 nuclear magnetic resonance studies of synthetic solid phases of calcium phosphate: potential models of bone mineral. , 1984, Biochemistry.

[49]  J. Waugh,et al.  High-resolution variable-temperature phosphorus-31 NMR of solid calcium phosphates , 1980 .

[50]  M. Catti,et al.  Low‐temperature ordering of hydrogen atoms in CaHPO4 (monetite): X‐ray and neutron diffraction study at 145 K , 1980 .

[51]  M. Catti,et al.  Hydrogen bonding in the crystalline state. CaHPO4 (monetite), P\overline{1} or P1? A novel neutron diffraction study , 1977 .

[52]  M. Catti,et al.  Hydrogen bonding in the crystalline state. Structure of NaH2PO4.H2O (orthorhombic phase), and crystal chemistry of the NaH2PO4.nH2O series , 1976 .

[53]  M. Catti,et al.  Hydrogen bonding in the crystalline state. NaH2PO4, a crystal structure with a short symmetrical hydrogen bond , 1974 .

[54]  D. W. Jones,et al.  Crystal structure of brushite, calcium hydrogen orthophosphate dihydrate: a neutron-diffraction investigation , 1971 .

[55]  R. Young,et al.  Significant precision in crystal structural details. Holly Springs hydroxyapatite , 1969 .

[56]  N. C. Webb The crystal structure of -Ca2P2O , 1966 .

[57]  D. Cruickshank,et al.  The crystal structures of two calcium orthophosphates: CaHPO4 and Ca(H2PO4)2 · H2O , 1961 .