Integrable vertex models and extended conformal invariance

Transfer matrix eigenvalues are exactly computed for large but finite size for a general class of q-state vertex models (q different states per bond, 2<or=q) from their nested Bethe ansatz equations. The conformal dimensions here obtained vary continuously as functions of the anisotropy parameter and express nicely in terms of the Cartan matrix of the underlying Lie algebra. They indicate the presence of an extended conformal invariance.

[1]  H. Vega,et al.  Integrable quantum field theories and conformal field theories from lattice models in the light-cone approach , 1988 .

[2]  V. Fateev,et al.  The Models of Two-Dimensional Conformal Quantum Field Theory with Z(n) Symmetry , 1988 .

[3]  H. Vega Finite-size corrections for nested Bethe ansatz models and conformal invariance , 1987 .

[4]  G. Quispel,et al.  Conformal anomaly and surface energy for Potts and Ashkin-Teller quantum chains , 1987 .

[5]  Woynarovich Excitation spectrum of the spin-(1/2 Heisenberg chain and conformal invariance. , 1987, Physical review letters.

[6]  F. Woynarovich,et al.  Finite-size corrections and numerical calculations for long spin 1/2 Heisenberg chains in the critical region , 1987 .

[7]  H. Vega,et al.  Conformal invariance and integrable theories , 1987 .

[8]  H. Vega,et al.  Exact Bethe ansatz solution of O(2N) symmetric theories , 1987 .

[9]  P. Goddard,et al.  Kac-Moody and Virasoro Algebras in Relation to Quantum Physics , 1986 .

[10]  P. Wiegmann,et al.  Factorized S Matrix and the Bethe Ansatz for Simple Lie Groups , 1986 .

[11]  I. Affleck Universal Term in the Free Energy at a Critical Point and the Conformal Anomaly , 1986 .

[12]  J. Cardy Operator Content of Two-Dimensional Conformally Invariant Theories , 1986 .

[13]  N. Reshetikhin Integrable models of quantum one-dimensional magnets with O(n) and Sp(2k) symmetry , 1985 .

[14]  H. Vega,et al.  Method for calculating finite size corrections in Bethe ansatz systems: Heisenberg chain and six-vertex model , 1985 .

[15]  H. Babujian Exact solution of the isotropic Heisenberg chain with arbitrary spins: Thermodynamics of the model , 1983 .

[16]  H. Vega,et al.  Exact solution of the Zn+1 × Zn+1 symmetric generalization of the XXZ model , 1982 .

[17]  H. Vega,et al.  Solutions of the factorization equations from Toda field theory , 1981 .

[18]  A. Belavin Dynamical symmetry of integrable quantum systems , 1981 .