Estimating and Projecting Trends in HIV/AIDS Generalized Epidemics Using Incremental Mixture Importance Sampling

The Joint United Nations Programme on HIV/AIDS (UNAIDS) has decided to use Bayesian melding as the basis for its probabilistic projections of HIV prevalence in countries with generalized epidemics. This combines a mechanistic epidemiological model, prevalence data, and expert opinion. Initially, the posterior distribution was approximated by sampling-importance-resampling, which is simple to implement, easy to interpret, transparent to users, and gave acceptable results for most countries. For some countries, however, this is not computationally efficient because the posterior distribution tends to be concentrated around nonlinear ridges and can also be multimodal. We propose instead incremental mixture importance sampling (IMIS), which iteratively builds up a better importance sampling function. This retains the simplicity and transparency of sampling importance resampling, but is much more efficient computationally. It also leads to a simple estimator of the integrated likelihood that is the basis for Bayesian model comparison and model averaging. In simulation experiments and on real data, it outperformed both sampling importance resampling and three publicly available generic Markov chain Monte Carlo algorithms for this kind of problem.

[1]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo Methods for Computing Bayes Factors , 2001 .

[2]  Yukito IBA,et al.  Population Monte Carlo algorithms , 2000, cond-mat/0008226.

[3]  Jean-Michel Marin,et al.  Convergence of Adaptive Sampling Schemes , 2004 .

[4]  R. Strawderman,et al.  Bayesian estimation of input parameters of a nitrogen cycle model applied to a forested reference watershed, Hubbard Brook Watershed Six , 2005 .

[5]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[6]  Harry T. Valentine,et al.  Assessing Uncertainty in a Stand Growth Model by Bayesian Synthesis , 1999, Forest Science.

[7]  A. Raftery,et al.  Bayesian melding for estimating uncertainty in national HIV prevalence estimates , 2008, Sexually Transmitted Infections.

[8]  P. Bolstad,et al.  Estimates of the distributions of forest ecosystem model inputs for deciduous forests of eastern North America. , 2001, Tree physiology.

[9]  A. Raftery,et al.  Inference for Deterministic Simulation Models: The Bayesian Melding Approach , 2000 .

[10]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[11]  David R. Bickel Comment on "Sequential Monte Carlo for Bayesian Computation" (P. Del Moral, A. Doucet, A. Jasra) , 2006 .

[12]  Arnaud Doucet,et al.  Interacting sequential Monte Carlo samplers for trans-dimensional simulation , 2008, Comput. Stat. Data Anal..

[13]  R. Douc,et al.  Convergence of Adaptive Sampling Schemes , 2007, 0708.0711.

[14]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[15]  Nandini Raghavan,et al.  Adaptive mixture importance sampling , 1998 .

[16]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .

[17]  Michael A. West,et al.  A dynamic modelling strategy for Bayesian computer model emulation , 2009 .

[18]  Edward E. Leamer,et al.  Specification Searches: Ad Hoc Inference with Nonexperimental Data , 1980 .

[19]  N. Walker,et al.  Improved data, methods and tools for the 2007 HIV and AIDS estimates and projections , 2008, Sexually Transmitted Infections.

[20]  M. West Approximating posterior distributions by mixtures , 1993 .

[21]  A. Owen,et al.  Safe and Effective Importance Sampling , 2000 .

[22]  A. Raftery,et al.  Local Adaptive Importance Sampling for Multivariate Densities with Strong Nonlinear Relationships , 1996 .

[23]  Adrian E. Raftery,et al.  Inference from a Deterministic Population Dynamics Model for Bowhead Whales , 1995 .

[24]  T Brown,et al.  Progress and challenges in modelling country-level HIV/AIDS epidemics: the UNAIDS Estimation and Projection Package 2007 , 2008, Sexually Transmitted Infections.

[25]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[26]  J Stover,et al.  The UNAIDS Estimation and Projection Package: a software package to estimate and project national HIV epidemics , 2004, Sexually Transmitted Infections.

[27]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[28]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[29]  R. Carroll,et al.  Stochastic Approximation in Monte Carlo Computation , 2007 .

[30]  Philip J. Radtke,et al.  Bayesian melding of a forest ecosystem model with correlated inputs , 2002 .

[31]  M. Clyde,et al.  Model Uncertainty , 2003 .

[32]  D. Rubin,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[33]  Ping Zhang Nonparametric Importance Sampling , 1996 .

[34]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[35]  M. Newton,et al.  Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity , 2006 .

[36]  R. Pearl Biometrics , 1914, The American Naturalist.

[37]  Adrian E. Raftery,et al.  Probabilistic projections of HIV prevalence using Bayesian melding. , 2007, 0709.0421.

[38]  Adrian E. Raftery,et al.  Computing Normalizing Constants for Finite Mixture Models via Incremental Mixture Importance Sampling (IMIS) , 2006 .

[39]  Mary Kathryn Cowles Review of WinBUGS 1.4 , 2004 .

[40]  G. Warnes The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .

[41]  Harry T. Valentine,et al.  Incorporating uncertainty into the parameters of a forest process model , 2000 .

[42]  D. Madigan,et al.  Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .

[43]  Ajay Jasra,et al.  On population-based simulation for static inference , 2007, Stat. Comput..

[44]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[45]  G. Roberts,et al.  OPTIMAL SCALING FOR PARTIALLY UPDATING MCMC ALGORITHMS , 2006, math/0607054.

[46]  Harry T. Valentine,et al.  Bayesian synthesis for quantifying uncertainty in predictions from process models. , 2000, Tree physiology.

[47]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[48]  Andrew D. Martin,et al.  MCMCpack: Markov chain Monte Carlo in R , 2011 .

[49]  F. Liang Dynamically Weighted Importance Sampling in Monte Carlo Computation , 2002 .

[50]  Valérie Ventura Non-parametric bootstrap recycling , 2002, Stat. Comput..

[51]  N. Chopin A sequential particle filter method for static models , 2002 .

[52]  O. Cappé,et al.  Population Monte Carlo , 2004 .

[53]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[54]  Man-Suk Oh,et al.  Integration of Multimodal Functions by Monte Carlo Importance Sampling , 1993 .

[55]  L. M. M.-T. Theory of Probability , 1929, Nature.

[56]  P. Moral,et al.  Sequential Monte Carlo for Bayesian Computation , 2006 .

[57]  Jean-Michel Marin,et al.  Adaptive importance sampling in general mixture classes , 2007, Stat. Comput..

[58]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[59]  T. Hesterberg,et al.  Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .