Estimating and Projecting Trends in HIV/AIDS Generalized Epidemics Using Incremental Mixture Importance Sampling
暂无分享,去创建一个
[1] Bradley P. Carlin,et al. Markov Chain Monte Carlo Methods for Computing Bayes Factors , 2001 .
[2] Yukito IBA,et al. Population Monte Carlo algorithms , 2000, cond-mat/0008226.
[3] Jean-Michel Marin,et al. Convergence of Adaptive Sampling Schemes , 2004 .
[4] R. Strawderman,et al. Bayesian estimation of input parameters of a nitrogen cycle model applied to a forested reference watershed, Hubbard Brook Watershed Six , 2005 .
[5] M. Newton. Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .
[6] Harry T. Valentine,et al. Assessing Uncertainty in a Stand Growth Model by Bayesian Synthesis , 1999, Forest Science.
[7] A. Raftery,et al. Bayesian melding for estimating uncertainty in national HIV prevalence estimates , 2008, Sexually Transmitted Infections.
[8] P. Bolstad,et al. Estimates of the distributions of forest ecosystem model inputs for deciduous forests of eastern North America. , 2001, Tree physiology.
[9] A. Raftery,et al. Inference for Deterministic Simulation Models: The Bayesian Melding Approach , 2000 .
[10] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[11] David R. Bickel. Comment on "Sequential Monte Carlo for Bayesian Computation" (P. Del Moral, A. Doucet, A. Jasra) , 2006 .
[12] Arnaud Doucet,et al. Interacting sequential Monte Carlo samplers for trans-dimensional simulation , 2008, Comput. Stat. Data Anal..
[13] R. Douc,et al. Convergence of Adaptive Sampling Schemes , 2007, 0708.0711.
[14] Jorge Nocedal,et al. A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..
[15] Nandini Raghavan,et al. Adaptive mixture importance sampling , 1998 .
[16] D. Rubin. Using the SIR algorithm to simulate posterior distributions , 1988 .
[17] Michael A. West,et al. A dynamic modelling strategy for Bayesian computer model emulation , 2009 .
[18] Edward E. Leamer,et al. Specification Searches: Ad Hoc Inference with Nonexperimental Data , 1980 .
[19] N. Walker,et al. Improved data, methods and tools for the 2007 HIV and AIDS estimates and projections , 2008, Sexually Transmitted Infections.
[20] M. West. Approximating posterior distributions by mixtures , 1993 .
[21] A. Owen,et al. Safe and Effective Importance Sampling , 2000 .
[22] A. Raftery,et al. Local Adaptive Importance Sampling for Multivariate Densities with Strong Nonlinear Relationships , 1996 .
[23] Adrian E. Raftery,et al. Inference from a Deterministic Population Dynamics Model for Bowhead Whales , 1995 .
[24] T Brown,et al. Progress and challenges in modelling country-level HIV/AIDS epidemics: the UNAIDS Estimation and Projection Package 2007 , 2008, Sexually Transmitted Infections.
[25] L. Wasserman,et al. Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .
[26] J Stover,et al. The UNAIDS Estimation and Projection Package: a software package to estimate and project national HIV epidemics , 2004, Sexually Transmitted Infections.
[27] W. Gilks,et al. Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .
[28] M. Plummer,et al. CODA: convergence diagnosis and output analysis for MCMC , 2006 .
[29] R. Carroll,et al. Stochastic Approximation in Monte Carlo Computation , 2007 .
[30] Philip J. Radtke,et al. Bayesian melding of a forest ecosystem model with correlated inputs , 2002 .
[31] M. Clyde,et al. Model Uncertainty , 2003 .
[32] D. Rubin,et al. The calculation of posterior distributions by data augmentation , 1987 .
[33] Ping Zhang. Nonparametric Importance Sampling , 1996 .
[34] Radford M. Neal. Annealed importance sampling , 1998, Stat. Comput..
[35] M. Newton,et al. Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity , 2006 .
[36] R. Pearl. Biometrics , 1914, The American Naturalist.
[37] Adrian E. Raftery,et al. Probabilistic projections of HIV prevalence using Bayesian melding. , 2007, 0709.0421.
[38] Adrian E. Raftery,et al. Computing Normalizing Constants for Finite Mixture Models via Incremental Mixture Importance Sampling (IMIS) , 2006 .
[39] Mary Kathryn Cowles. Review of WinBUGS 1.4 , 2004 .
[40] G. Warnes. The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .
[41] Harry T. Valentine,et al. Incorporating uncertainty into the parameters of a forest process model , 2000 .
[42] D. Madigan,et al. Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .
[43] Ajay Jasra,et al. On population-based simulation for static inference , 2007, Stat. Comput..
[44] Adrian E. Raftery,et al. Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .
[45] G. Roberts,et al. OPTIMAL SCALING FOR PARTIALLY UPDATING MCMC ALGORITHMS , 2006, math/0607054.
[46] Harry T. Valentine,et al. Bayesian synthesis for quantifying uncertainty in predictions from process models. , 2000, Tree physiology.
[47] Andrew Thomas,et al. WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..
[48] Andrew D. Martin,et al. MCMCpack: Markov chain Monte Carlo in R , 2011 .
[49] F. Liang. Dynamically Weighted Importance Sampling in Monte Carlo Computation , 2002 .
[50] Valérie Ventura. Non-parametric bootstrap recycling , 2002, Stat. Comput..
[51] N. Chopin. A sequential particle filter method for static models , 2002 .
[52] O. Cappé,et al. Population Monte Carlo , 2004 .
[53] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[54] Man-Suk Oh,et al. Integration of Multimodal Functions by Monte Carlo Importance Sampling , 1993 .
[55] L. M. M.-T.. Theory of Probability , 1929, Nature.
[56] P. Moral,et al. Sequential Monte Carlo for Bayesian Computation , 2006 .
[57] Jean-Michel Marin,et al. Adaptive importance sampling in general mixture classes , 2007, Stat. Comput..
[58] Jun S. Liu,et al. Sequential Imputations and Bayesian Missing Data Problems , 1994 .
[59] T. Hesterberg,et al. Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .