Binary Online Learned Descriptors

We propose a novel approach to generate a binary descriptor optimized for each image patch independently. The approach is inspired by the linear discriminant embedding that simultaneously increases inter and decreases intra class distances. A set of discriminative and uncorrelated binary tests is established from all possible tests in an offline training process. The patch adapted descriptors are then efficiently built online from a subset of features which lead to lower intra-class distances and thus, to a more robust descriptor. We perform experiments on three widely used benchmarks and demonstrate improvements in matching performance, and illustrate that per-patch optimization outperforms global optimization.

[1]  Pascal Fua,et al.  LDAHash: Improved Matching with Smaller Descriptors , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Krystian Mikolajczyk,et al.  Learning local feature descriptors with triplets and shallow convolutional neural networks , 2016, BMVC.

[4]  Nikos Komodakis,et al.  Learning to compare image patches via convolutional neural networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Gang Hua,et al.  Picking the best DAISY , 2009, CVPR.

[6]  Yann LeCun,et al.  Dimensionality Reduction by Learning an Invariant Mapping , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[7]  S. Hinz,et al.  mdBrief - A Fast Online Adaptable, Distorted Binary Descriptor for Real-Time Applications Using Calibrated Wide-Angle Or Fisheye Cameras , 2016, Comput. Vis. Image Underst..

[8]  Vincent Lepetit,et al.  Efficient Discriminative Projections for Compact Binary Descriptors , 2012, ECCV.

[9]  Iasonas Kokkinos,et al.  Discriminative Learning of Deep Convolutional Feature Point Descriptors , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[10]  Yann LeCun,et al.  Signature Verification Using A "Siamese" Time Delay Neural Network , 1993, Int. J. Pattern Recognit. Artif. Intell..

[11]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[12]  Hongping Cai,et al.  Learning Linear Discriminant Projections for Dimensionality Reduction of Image Descriptors , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Jiwen Lu,et al.  Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[15]  Thomas Brox,et al.  Descriptor Matching with Convolutional Neural Networks: a Comparison to SIFT , 2014, ArXiv.

[16]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[17]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Rahul Sukthankar,et al.  MatchNet: Unifying feature and metric learning for patch-based matching , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Patricio A. Vela,et al.  Learning binary features online from motion dynamics for incremental loop-closure detection and place recognition , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[20]  Yongdong Zhang,et al.  Binary Code Ranking with Weighted Hamming Distance , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Yung-Yu Chuang,et al.  Accumulated Stability Voting: A Robust Descriptor from Descriptors of Multiple Scales , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[23]  Bernd Girod,et al.  CHoG: Compressed histogram of gradients A low bit-rate feature descriptor , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Cordelia Schmid,et al.  Vector Quantizing Feature Space with a Regular Lattice , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[25]  Vincent Lepetit,et al.  Boosting Binary Keypoint Descriptors , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[27]  Yann LeCun,et al.  Learning a similarity metric discriminatively, with application to face verification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[28]  Nalini K. Ratha,et al.  Iris individuality: a partial iris model , 2004, ICPR 2004.

[29]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[30]  Matthew A. Brown,et al.  Learning Local Image Descriptors , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  K.W. Bowyer,et al.  The Best Bits in an Iris Code , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Gang Hua,et al.  Discriminative Learning of Local Image Descriptors , 1990, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Andrew Zisserman,et al.  Learning Local Feature Descriptors Using Convex Optimisation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Vincent Lepetit,et al.  Fast Keypoint Recognition Using Random Ferns , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.