Soliton interaction in the higher-order nonlinear Schrödinger equation investigated with Hirota's bilinear method.

The soliton interaction is investigated based on solving the higher-order nonlinear Schrödinger equation with the effects of third-order dispersion, self-steepening, and stimulated Raman scattering. By using Hirota's bilinear method, the analytic one-, two-, and three-soliton solutions of this model are obtained. According to those solutions, the relevant properties and features of physical and optical interest are illustrated. The results of this paper will be valuable to the study of signal amplification and pulse compression.

[1]  Bo Tian,et al.  Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers [rapid communication] , 2005 .

[2]  C. Desem,et al.  Soliton propagation in the presence of source chirping and mutual interaction in single-mode optical fibres , 1987 .

[3]  R. Hirota Exact envelope‐soliton solutions of a nonlinear wave equation , 1973 .

[4]  T. Kinoshita,et al.  Optical Soliton Transmission Experiment in a Comb-Like Dispersion Profiled Fiber Loop with Amplifier Spacing Much Longer than the Dispersion Distance , 1997 .

[5]  Zhenya Yan,et al.  Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces , 2001 .

[6]  C. Desem,et al.  Gaussian pulse propagation in nonlinear optical fibre , 1983 .

[7]  M. Lisak,et al.  Bandwidth limits due to mutual pulse interaction in optical soliton communication systems. , 1986, Optics letters.

[8]  Tao Xu,et al.  Symbolic-computation construction of transformations for a more generalized nonlinear Schrödinger equation with applications in inhomogeneous plasmas, optical fibers, viscous fluids and Bose-Einstein condensates , 2007 .

[9]  A. Hasegawa,et al.  Nonlinear pulse propagation in a monomode dielectric guide , 1987 .

[10]  J. Nimmo,et al.  The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form , 1984 .

[11]  M. P. Barnett,et al.  Symbolic calculation in chemistry: Selected examples , 2004 .

[12]  Bo Tian,et al.  Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves , 2005 .

[13]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[14]  Bo Tian,et al.  Cylindrical Kadomtsev–Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves , 2006 .

[15]  Pak Lim Chu,et al.  Mutual interaction between solitons of unequal amplitudes in optical fibre , 1985 .

[16]  Bo Tian,et al.  Transformations for a generalized variable-coefficient nonlinear Schrödinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation , 2005 .

[17]  Bo Tian,et al.  On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation , 2005 .

[18]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[19]  Bo Tian,et al.  Soliton-like solutions of a generalized variable-coefficient higher order nonlinear Schrödinger equation from inhomogeneous optical fibers with symbolic computation , 2007 .

[20]  Bo Tian,et al.  Reply to: “Comment on: ‘Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation’ ” [Phys. Lett. A 361 (2007) 520] , 2007 .

[21]  G. Lamb Elements of soliton theory , 1980 .

[22]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[23]  Bo Tian,et al.  Comment on ``Exact solutions of cylindrical and spherical dust ion acoustic waves'' [Phys. Plasmas 10, 4162 (2003)] , 2005 .

[24]  J. Gordon Interaction forces among solitons in optical fibers. , 1983, Optics letters.

[25]  Bo Tian,et al.  Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: New transformation with burstons, brightons and symbolic computation , 2006 .

[26]  B. Tian,et al.  Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas , 2007 .

[27]  M. Lakshmanan,et al.  Periodic energy switching of bright solitons in mixed coupled nonlinear Schrödinger equations with linear self-coupling and cross-coupling terms , 2007, 0711.2717.

[28]  M Lakshmanan,et al.  Exact soliton solutions of coupled nonlinear Schrödinger equations: shape-changing collisions, logic gates, and partially coherent solitons. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Bo Tian,et al.  Transformations for a generalized variable-coefficient Korteweg de Vries model from blood vessels, Bose Einstein condensates, rods and positons with symbolic computation , 2006 .

[30]  Woo-Pyo Hong,et al.  Comment on: “Spherical Kadomtsev Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation” [Phys. Lett. A 340 (2005) 243] , 2007 .

[31]  T. Alagesan,et al.  Singularity structure analysis of inhomogeneous Hirota and higher order nonlinear Schrödinger equations , 2005 .

[32]  Yuji Kodama,et al.  Optical solitons in a monomode fiber , 1985 .

[33]  K. C. Chan,et al.  Short pulse generation by higher order soliton-effect compression: effects of optical fiber characteristics , 1995 .

[34]  M Lakshmanan,et al.  Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrödinger equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Bo Tian,et al.  Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation , 2005 .

[36]  V. Serkin,et al.  Decay and interaction of femtosecond optical solitons induced by the Raman self-scattering effect. , 1990, Optics letters.

[37]  Bo Tian,et al.  Spherical nebulons and Bäcklund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation , 2005 .

[38]  N. Akhmediev,et al.  On the solution of multicomponent nonlinear Schrödinger equations , 2004 .

[39]  Bo Tian,et al.  On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations , 2007 .

[40]  B. Tian,et al.  Macropterons, micropterons and similarity reductions for the regularized Ostrovsky-Grimshaw model for fluids and plasmas with symbolic computation , 2006 .

[41]  Gopal Das,et al.  Response to “Comment on ‘A new mathematical approach for finding the solitary waves in dusty plasma’ ” [Phys. Plasmas 6, 4392 (1999)] , 1999 .

[42]  Dynamical stabilization of solitons in cubic-quintic nonlinear Schrödinger model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Bo Tian,et al.  Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: Variable-coefficient bilinear form, Bäcklund transformation, brightons and symbolic computation , 2007 .

[44]  Bo Tian,et al.  Cosmic dust-ion-acoustic waves, spherical modified Kadomtsev-Petviashvili model, and symbolic computation , 2006 .

[45]  Bo Tian,et al.  Interactions of bright solitons for the (2+1)-dimensional coupled nonlinear Schrödinger equations from optical fibres with symbolic computation , 2007 .

[46]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[47]  Bo Tian,et al.  (3+1)-dimensional generalized Johnson model for cosmic dust-ion-acoustic nebulons with symbolic computation , 2006 .