Stochastic Decoding of Turbo Codes

Stochastic computation is a technique in which operations on probabilities are performed on random bit streams. Stochastic decoding of forward error-correction (FEC) codes is inspired by this technique. This paper extends the application of the stochastic decoding approach to the families of convolutional codes and turbo codes. It demonstrates that stochastic computation is a promising solution to improve the data throughput of turbo decoders with very simple implementations. Stochastic fully-parallel turbo decoders are shown to achieve the error correction performance of conventional a posteriori probability (APP) decoders. To our knowledge, this is the first stochastic turbo decoder which decodes a state-of-the-art turbo code. Additionally, an innovative systematic technique is proposed to cope with stochastic additions, responsible for the throughput bottleneck.

[1]  John B. Anderson,et al.  Tailbiting MAP Decoders , 1998, IEEE J. Sel. Areas Commun..

[2]  Joachim Hagenauer,et al.  The analog decoder , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[3]  Sergio Benedetto,et al.  Design of fixed-point iterative decoders for concatenated codes with interleavers , 2001, IEEE J. Sel. Areas Commun..

[4]  W. J. Poppelbaum,et al.  Stochastic computing elements and systems , 1967, AFIPS '67 (Fall).

[5]  Vincent C. Gaudet,et al.  Stochastic iterative decoders , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[6]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[7]  H. Loeliger,et al.  Probability propagation and decoding in analog VLSI , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[8]  Shie Mannor,et al.  Survey of Stochastic Computation on Factor Graphs , 2007, 37th International Symposium on Multiple-Valued Logic (ISMVL'07).

[9]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[10]  Vincent C. Gaudet,et al.  Iterative decoding using stochastic computation , 2003 .

[11]  Brian R. Gaines,et al.  Stochastic computing , 1967, AFIPS '67 (Spring).

[12]  Shie Mannor,et al.  Stochastic decoding of LDPC codes , 2006, IEEE Communications Letters.

[13]  Shie Mannor,et al.  Fully Parallel Stochastic LDPC Decoders , 2008, IEEE Transactions on Signal Processing.

[14]  W.J. Gross,et al.  Stochastic Implementation of LDPC Decoders , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[15]  Patrick Robertson,et al.  A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[16]  Bo Zhu,et al.  Stochastic Decoding of Linear Block Codes With High-Density Parity-Check Matrices , 2008, IEEE Transactions on Signal Processing.

[17]  Leopoldo García Franquelo,et al.  Fully parallel stochastic computation architecture , 1996, IEEE Trans. Signal Process..

[18]  S. Dolinar,et al.  Weight distributions for turbo codes using random and nonrandom permutations , 1995 .