Towards Self-Adaptation of Robot Organisms with a High Developmental Plasticity

In this work we explore several adaptation processesin systems with a high degree of developmental plasticity.It is indicated that such systems are driven by twodifferent forces: adaptation fitness and design goals. The goals, formulated in an invariant way to environmental changes, represent an example of a self-concept, used in developmental processes. This paper gives an example of collective locomotion, introduces four different adaptive mechanisms and finally discuss the self-development of such systems.

[1]  Philip N. Johnson-Laird,et al.  Thinking; Readings in Cognitive Science , 1977 .

[2]  Thomas Schmickl,et al.  Open-ended on-board Evolutionary Robotics for robot swarms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[3]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[4]  Serge Kernbach,et al.  Structural self-organization in multi-agents and multi-robotic systems , 2008 .

[5]  Serge Kernbach,et al.  Study of Macroscopic Morphological Features of Symbiotic Robotic Organisms , 2008 .

[6]  L. Schauble,et al.  Beyond Modularity: A Developmental Perspective on Cognitive Science. , 1994 .

[7]  Joan Gurvis,et al.  Adaptability: Responding Effectively to Change , 2006 .

[8]  E. Mosekilde,et al.  TRANSVERSE INSTABILITY AND RIDDLED BASINS IN A SYSTEM OF TWO COUPLED LOGISTIC MAPS , 1998 .

[9]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[10]  Herbert A. Simon,et al.  Templates in Chess Memory: A Mechanism for Recalling Several Boards , 1996, Cognitive Psychology.

[11]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[12]  Kate C. McLean,et al.  Selves Creating Stories Creating Selves: A Process Model of Self-Development , 2007, Personality and social psychology review : an official journal of the Society for Personality and Social Psychology, Inc.

[13]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[14]  Karsten Weicker,et al.  Evolutionäre Algorithmen, 2. Auflage , 2007, Leitfäden der Informatik.

[15]  K. Kaneko,et al.  Functional dynamics. I: articulation process , 1999, adap-org/9907006.

[16]  George C. Williams,et al.  Adaptation and Natural Selection , 2018 .

[17]  Thomas Schmickl,et al.  SymbricatorRTOS: A flexible and Dynamic framework for bio-inspired robot control systems and evolution , 2009, 2009 IEEE Congress on Evolutionary Computation.

[18]  Joan S. Birman BRAIDS, KNOTS AND CONTACT STRUCTURES , 2004 .

[19]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[20]  Yasuo Kuniyoshi,et al.  Early motor development from partially ordered neural-body dynamics: experiments with a cortico-spinal-musculo-skeletal model , 2006, Biological Cybernetics.

[21]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[22]  F. Richman,et al.  Numbers and Symmetry: An Introduction to Algebra , 1997 .

[23]  Jian-Min Yuan,et al.  Crises and Hysteresis in Coupled Logistic Maps , 1984 .

[24]  Giulio Sandini,et al.  Developmental robotics: a survey , 2003, Connect. Sci..

[25]  Kunihiko Kaneko,et al.  Theory and Applications of Coupled Map Lattices , 1993 .

[26]  Serge Kernbach,et al.  Evolutionary robotics: The next-generation-platform for on-line and on-board artificial evolution , 2009, 2009 IEEE Congress on Evolutionary Computation.

[27]  Paul Levi,et al.  From real robot swarm to evolutionary multi-robot organism , 2007, 2007 IEEE Congress on Evolutionary Computation.

[28]  Kiziltan Zeynep,et al.  Group-graphs Associated with Row and Column Symmetries of Matrix Models: Some Observartions , 2002 .