Dissecting the concave–convex π‐π interaction in corannulene and sumanene dimers: SAPT(DFT) analysis and performance of DFT dispersion‐corrected methods

The characteristics of the concave–convex π‐π interactions are evaluated in 32 buckybowl dimers formed by corannulene, sumanene, and two substituted sumanenes (with S and CO groups), using symmetry‐adapted perturbation theory [SAPT(DFT)] and density functional theory (DFT). According to our results, the main stabilizing contribution is dispersion, followed by electrostatics. Regarding the ability of DFT methods to reproduce the results obtained with the most expensive and rigorous methods, TPSS‐D seems to be the best option overall, although its results slightly tend to underestimate the interaction energies and to overestimate the equilibrium distances. The other two tested DFT‐D methods, B97‐D2 and B3LYP‐D, supply rather reasonable results as well. M06‐2X, although it is a good option from a geometrical point of view, leads to too weak interactions, with differences with respect to the reference values amounting to about 4 kcal/mol (25% of the total interaction energy). © 2017 Wiley Periodicals, Inc.

[1]  Bryan M. Wong Noncovalent interactions in supramolecular complexes: A study on corannulene and the double concave buckycatcher , 2009, J. Comput. Chem..

[2]  Pablo A. Denis,et al.  A theoretical study on the interaction between well curved conjugated systems and fullerenes smaller than C60 or larger than C70 , 2014 .

[3]  Kevin E. Riley,et al.  The performance of MP2.5 and MP2.X methods for nonequilibrium geometries of molecular complexes. , 2012, Physical chemistry chemical physics : PCCP.

[4]  Jan Řezáč,et al.  Extrapolation and Scaling of the DFT-SAPT Interaction Energies toward the Basis Set Limit. , 2011, Journal of chemical theory and computation.

[5]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[6]  Alba Campo-Cacharrón,et al.  Interaction between ions and substituted buckybowls: A comprehensive computational study , 2014, J. Comput. Chem..

[7]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[8]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[9]  F. Neese,et al.  Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization. , 2011, The Journal of chemical physics.

[10]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[11]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[12]  Hidehiro Sakurai,et al.  A Synthesis of Sumanene, a Fullerene Fragment , 2003, Science.

[13]  A. Hesselmann,et al.  Intermolecular symmetry-adapted perturbation theory study of large organic complexes. , 2014, The Journal of chemical physics.

[14]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[15]  J. Siegel,et al.  Synthesis and Characterization of the First Corannulene Cyclophane , 1996 .

[16]  D. Josa,et al.  A DFT study of substituent effects in corannulene dimers. , 2011, Physical chemistry chemical physics : PCCP.

[17]  L. T. Scott,et al.  Geodesic polyarenes with exposed concave surfaces , 1999 .

[18]  S. Yamago,et al.  Size-selective encapsulation of C60 by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. , 2011, Angewandte Chemie.

[19]  N. Martín,et al.  Supramolecular Chemistry of Fullerenes and Carbon Nanotubes: MARTIN:SUPRAMOL FULLERENE O-BK , 2012 .

[20]  N. Martín,et al.  π-π interactions in carbon nanostructures. , 2015, Chemical Society reviews.

[21]  T. Torres,et al.  Inclusion of C60 fullerene in a M3L2 subphthalocyanine cage. , 2004, Chemical communications.

[22]  Pablo A. Denis,et al.  Theoretical investigation of the stacking interactions between curved conjugated systems and their interaction with fullerenes , 2011 .

[23]  A. Sygula,et al.  Molecular Clips and Tweezers with Corannulene Pincers , 2009 .

[24]  M. Schütz,et al.  Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. , 2005, The Journal of chemical physics.

[25]  A. Sygula,et al.  A double concave hydrocarbon buckycatcher. , 2007, Journal of the American Chemical Society.

[26]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[27]  Stefan Grimme,et al.  Inclusion complexes of buckycatcher with C(60) and C(70). , 2010, Physical chemistry chemical physics : PCCP.

[28]  Yi-Jun Guo,et al.  Nature of Noncovalent Interactions in the [n]Cycloparaphenylene⊃C70 (n = 10, 11, and 12) Host–Guest Complexes: A Theoretical Insight into the Shortest C70–Carbon Nanotube Peapod , 2015 .

[29]  Pablo A. Denis,et al.  A comparative study on the performance of subphthalocyanines and corannulene derivatives as receptors for fullerenes , 2014 .

[30]  S. Wheeler,et al.  Intercolumnar Interactions Control the Local Orientations within Columnar Stacks of Sumanene and Sumanene Derivatives , 2017 .

[31]  A. Sygula,et al.  π‐π Stacking of curved carbon networks: The corannulene dimer , 2009 .

[32]  G. Westman,et al.  C60 embedded in γ-cyclodextrin: a water-soluble fullerene , 1992 .

[33]  Pavel Hobza,et al.  MP2.X: a generalized MP2.5 method that produces improved binding energies with smaller basis sets. , 2011, Physical chemistry chemical physics : PCCP.

[34]  Trygve Helgaker,et al.  Basis-set convergence in correlated calculations on Ne, N2, and H2O , 1998 .

[35]  E. Cabaleiro-Lago,et al.  Analysis of the performance of DFT-D, M05-2X and M06-2X functionals for studying π⋯π interactions , 2013 .

[36]  Frank Neese,et al.  The ORCA program system , 2012 .

[37]  S. Fukuzumi,et al.  Chemical Science of π-Electron Systems , 2015 .

[38]  C. Sherrill,et al.  Buckyplates and buckybowls: examining the effects of curvature on π-π interactions. , 2012, The journal of physical chemistry. A.

[39]  T. Hirao,et al.  Synthesis of oxosumanenes through benzylic oxidation. , 2011, The Journal of organic chemistry.

[40]  E. Cabaleiro-Lago,et al.  Interaction between anions and substituted molecular bowls. , 2012, Physical chemistry chemical physics : PCCP.

[41]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[42]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[43]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[44]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[45]  A. Tkatchenko,et al.  van der Waals dispersion interactions in molecular materials: beyond pairwise additivity , 2015, Chemical science.

[46]  A. Sygula,et al.  Inclusion Complexes and Solvates of Buckycatcher, a Versatile Molecular Host with Two Corannulene Pincers , 2014 .

[47]  E. Tosatti,et al.  C60/corannulene on Cu(110): a surface-supported bistable buckybowl-buckyball host-guest system. , 2008, Journal of the American Chemical Society.

[48]  K. Itami,et al.  Cycloparaphenylene-based ionic donor-acceptor supramolecule: isolation and characterization of Li⁺@C60⊂[10]CPP. , 2015, Angewandte Chemie.

[49]  S. Grimme Supramolecular binding thermodynamics by dispersion-corrected density functional theory. , 2012, Chemistry.

[50]  R. Lawton,et al.  Dibenzo[ghi,mno]fluoranthene , 1966 .

[51]  T. Hirao,et al.  A molecular bowl sumanene. , 2011, Chemical communications.

[52]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[53]  L. García-Escudero,et al.  Enhanced association for C70 over C60 with a metal complex with corannulene derivate ligands. , 2014, Dalton transactions.

[54]  Pablo A. Denis,et al.  Design and characterization of two strong fullerene receptors based on ball-socket interactions , 2014 .

[55]  D. Guldi,et al.  Coordinative interactions between porphyrins and C60, La@C82, and La2@C80. , 2013, Chemistry.

[56]  C. Reed,et al.  Fullerene-porphyrin constructs. , 2005, Accounts of chemical research.

[57]  C. David Sherrill,et al.  Wavefunction methods for noncovalent interactions , 2012 .

[58]  L. T. Scott,et al.  Fragments of fullerenes and carbon nanotubes : designed synthesis, unusual reactions, and coordination chemistry , 2011 .

[59]  Jean-Marie Lehn,et al.  Toward complex matter: Supramolecular chemistry and self-organization , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[61]  Stefan Grimme,et al.  Comprehensive Benchmark of Association (Free) Energies of Realistic Host-Guest Complexes. , 2015, Journal of chemical theory and computation.

[62]  Krzysztof Szalewicz,et al.  Symmetry‐adapted perturbation theory of intermolecular forces , 2012 .

[63]  Pavel Hobza,et al.  Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. , 2010, Chemical reviews.

[64]  A. Becke,et al.  A post-Hartree-Fock model of intermolecular interactions. , 2005, The Journal of chemical physics.

[65]  M. Puska,et al.  Tunability of the optical absorption in small silver cluster-polymer hybrid systems. , 2010, The Journal of chemical physics.

[66]  D. Truhlar,et al.  Computational characterization and modeling of buckyball tweezers: density functional study of concave-convex pi...pi interactions. , 2008, Physical chemistry chemical physics : PCCP.

[67]  Ring-annelated corannulenes as fullerene receptors. A DFT-D study , 2014 .

[68]  Y. Aso,et al.  Triphenyleno[1,12-bcd:4,5-b′c′d′:8,9-b″c″d″]trithiophene: the first bowl-shaped heteroaromatic , 1999 .

[69]  D. Guldi,et al.  Self-assembly, host-guest chemistry, and photophysical properties of subphthalocyanine-based metallosupramolecular capsules. , 2013, Journal of the American Chemical Society.

[70]  H. Sakurai,et al.  Structural elucidation of sumanene and generation of its benzylic anions. , 2005, Journal of the American Chemical Society.

[71]  Takeshi Kawase,et al.  Ball-, bowl-, and belt-shaped conjugated systems and their complexing abilities: exploration of the concave-convex pi-pi interaction. , 2006, Chemical reviews.

[72]  P. Denis,et al.  Porphyrins bearing corannulene pincers: outstanding fullerene receptors , 2016 .

[73]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[74]  Pavel Hobza,et al.  MP2.5 and MP2.X: approaching CCSD(T) quality description of noncovalent interaction at the cost of a single CCSD iteration. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[75]  G. Chałasiński,et al.  State of the Art and Challenges of the ab Initio Theory of Intermolecular Interactions. , 2000, Chemical reviews.

[76]  Jean-Philip Piquemal,et al.  NCIPLOT: a program for plotting non-covalent interaction regions. , 2011, Journal of chemical theory and computation.

[77]  A. Sygula,et al.  Thermodynamics of Host–Guest Interactions between Fullerenes and a Buckycatcher , 2014, The journal of physical chemistry. B.

[78]  Georg Jansen,et al.  Symmetry‐adapted perturbation theory based on density functional theory for noncovalent interactions , 2014 .

[79]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[80]  P. Pulay,et al.  Convex–concave stacking of curved conjugated networks: Benchmark calculations on the corannulene dimer , 2011 .

[81]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[82]  T. Ramalho,et al.  Substituted corannulenes and sumanenes as fullerene receptors. A dispersion-corrected density functional theory study. , 2014, The journal of physical chemistry. A.

[83]  Krzysztof Szalewicz,et al.  Symmetry-adapted perturbation-theory calculations of intermolecular forces employing density-functional description of monomers. , 2005, The Journal of chemical physics.

[84]  E. Cabaleiro-Lago,et al.  Carbon-nanorings ([10]CPP and [6]CPPA) as fullerene (C60 and C70) receptors: a comprehensive dispersion-corrected DFT study. , 2016, Physical chemistry chemical physics : PCCP.

[85]  N. Martín,et al.  Tripodal exTTF-CTV hosts for fullerenes. , 2010, Journal of the American Chemical Society.

[86]  T. Aida,et al.  Metalloporphyrin hosts for supramolecular chemistry of fullerenes. , 2007, Chemical Society reviews.

[87]  A. Sygula,et al.  Bis-corannulene Receptors for Fullerenes Based on Klärner's Tethers: Reaching the Affinity Limits. , 2015, Organic letters.

[88]  L. T. Scott,et al.  Corannulene. A convenient new synthesis , 1991 .

[89]  N. Martín,et al.  Supramolecular chemistry of fullerenes and carbon nanotubes , 2012 .

[90]  Tailoring buckybowls for fullerene recognition. A dispersion-corrected DFT study. , 2015, Physical chemistry chemical physics : PCCP.

[91]  E. Cabaleiro-Lago,et al.  Fullerene recognition with molecular tweezers made up of efficient buckybowls: a dispersion-corrected DFT study. , 2015, Physical chemistry chemical physics : PCCP.

[92]  Pablo A. Denis,et al.  Theoretical characterization of existing and new fullerene receptors , 2013 .

[93]  L. T. Scott,et al.  X-ray quality geometries of geodesic polyarenes from theoretical calculations: what levels of theory are reliable? , 2005, The Journal of organic chemistry.

[94]  Atsushi Ikeda,et al.  Novel interaction of calixarene p-systems with metal ions and fullerenes , 1999 .

[95]  Alexandre Tkatchenko,et al.  Hard Numbers for Large Molecules: Toward Exact Energetics for Supramolecular Systems. , 2014, The journal of physical chemistry letters.