Thickness effect on fracture behavior of columnar-grained Cu with preferentially oriented nanoscale twins

[1]  Lei Lu,et al.  Intrinsic fracture toughness of bulk nanostructured Cu with nanoscale deformation twins , 2017 .

[2]  N. Hansen,et al.  Dependence of dislocation structure on orientation and slip systems in highly oriented nanotwinned Cu , 2017 .

[3]  A. K. Tieu,et al.  Deformation mechanisms in nanotwinned copper by molecular dynamics simulation , 2017 .

[4]  Lei Lu,et al.  Fracture behavior of an austenitic stainless steel with nanoscale deformation twins , 2017 .

[5]  Lei Lu,et al.  Enhancing fracture toughness of nanotwinned austenitic steel by thermal annealing , 2016 .

[6]  Y. .. Wang,et al.  Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals , 2016 .

[7]  Z. Zeng,et al.  Fracture in a thin film of nanotwinned copper , 2015 .

[8]  A. Kobler,et al.  Orientation dependent fracture behavior of nanotwinned copper , 2015 .

[9]  Lei Lu,et al.  Effect of Strain Rate on Tensile Ductility and Fracture Behavior of Bulk Nanotwinned Copper , 2015 .

[10]  S. Mao,et al.  Atomistic observation of a crack tip approaching coherent twin boundaries , 2014, Scientific Reports.

[11]  Huajian Gao,et al.  Plastic anisotropy and associated deformation mechanisms in nanotwinned metals , 2013 .

[12]  Huajian Gao,et al.  Deformation mechanisms in nanotwinned metal nanopillars. , 2012, Nature nanotechnology.

[13]  Huajian Gao,et al.  Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling , 2012 .

[14]  Huajian Gao,et al.  In situ observations of crack arrest and bridging by nanoscale twins in copper thin films , 2012 .

[15]  Xiaolei Wu,et al.  Deformation twinning in nanocrystalline materials , 2012 .

[16]  Lei Lu,et al.  Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins , 2011 .

[17]  J. Weertman,et al.  Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins , 2011 .

[18]  S. Qu,et al.  Toughening by nano-scaled twin boundaries in nanocrystals , 2010 .

[19]  A. Shahani,et al.  Experimental and numerical investigation of thickness effect on ductile fracture toughness of steel alloy sheets , 2010 .

[20]  S. Qu,et al.  The effect of nanoscale twin boundaries on fracture toughness in nanocrystalline Ni , 2010, Nanotechnology.

[21]  J. Tan,et al.  Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles , 2009 .

[22]  J. Weertman,et al.  Microstructural stability during cyclic loading of multilayer copper/copper samples with nanoscale twinning , 2009 .

[23]  R. Ritchie,et al.  On the Fracture Toughness of Advanced Materials , 2009 .

[24]  K. Lu,et al.  Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale , 2009, Science.

[25]  K. Lu,et al.  Enhanced fracture toughness of bulk nanocrystalline Cu with embedded nanoscale twins , 2009 .

[26]  Xiaoxu Huang,et al.  Revealing the Maximum Strength in Nanotwinned Copper , 2009, Science.

[27]  A. Minor,et al.  The effect of twin plane spacing on the deformation of copper containing a high density of growth twins , 2008 .

[28]  Yinmin M Wang,et al.  Mechanical deformation of high-purity sputter-deposited nano-twinned copper , 2008 .

[29]  K. Lu,et al.  Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles , 2008 .

[30]  Lei Lu,et al.  Ultrahigh Strength and High Electrical Conductivity in Copper , 2004, Science.

[31]  M. Merz,et al.  Tensile strength and work hardening of ultrafine‐grained high‐purity copper , 1975 .