AGGREGATION-BASED ALGEBRAIC MULTIGRID FOR CONVECTION-DIFFUSION EQUATIONS∗

We consider the iterative solution of large sparse linear systems arising from the upwind finite difference discretization of convection-diffusion equations. The system matrix is then an M-matrix with nonnegative row sum, and, further, when the convective flow has zero divergence, the column sum is also nonnegative, possibly up to a small correction term. We investigate aggregationbased algebraic multigrid methods for this class of matrices. A theoretical analysis is developed for a simplified two-grid scheme with one damped Jacobi postsmoothing step. An uncommon feature of this analysis is that it applies directly to problems with variable coefficients; e.g., to problems with recirculating convective flow. On the basis of this theory, we develop an approach in which a guarantee is given on the convergence rate thanks to an aggregation algorithm that allows an explicit control of the location of the eigenvalues of the preconditioned matrix. Some issues that remain beyond the analysis are discussed in the light of numerical experiments, and the efficiency of the method is illustrated on a sample of large twoand three-dimensional problems with highly varying convective flow.

[1]  V. Bulgakov Multi-level iterative technique and aggregation concept with semi-analytical preconditioning for solving boundary-value problems , 1993 .

[2]  J. E. Dendy Black box multigrid for nonsymmetric problems , 1983 .

[3]  Dietrich Braess Towards algebraic multigrid for elliptic problems of second order , 2005, Computing.

[4]  D FalgoutRobert An Introduction to Algebraic Multigrid , 2006 .

[5]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[6]  Thomas A. Manteuffel,et al.  Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..

[7]  S. McCormick,et al.  Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .

[8]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[9]  Howard C. Elman,et al.  Analysis and Comparison of Geometric and Algebraic Multigrid for Convection-Diffusion Equations , 2006, SIAM J. Sci. Comput..

[10]  Artem Napov,et al.  Algebraic analysis of aggregation‐based multigrid , 2011, Numer. Linear Algebra Appl..

[11]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[12]  Cornelis W. Oosterlee,et al.  Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows , 1999, SIAM J. Sci. Comput..

[13]  Zdenek Strakos,et al.  GMRES Convergence Analysis for a Convection-Diffusion Model Problem , 2005, SIAM J. Sci. Comput..

[14]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[15]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[16]  Yvan Notay,et al.  Algebraic analysis of two‐grid methods: The nonsymmetric case , 2010, Numer. Linear Algebra Appl..

[17]  Cornelis W. Oosterlee,et al.  An Evaluation of Parallel Multigrid as a Solver and a Preconditioner for Singularly Perturbed Problems , 1998, SIAM J. Sci. Comput..

[18]  Maximilian Emans,et al.  Performance of parallel AMG-preconditioners in CFD-codes for weakly compressible flows , 2010, Parallel Comput..

[19]  Ludmil T. Zikatanov,et al.  A multigrid method based on graph matching for convection–diffusion equations , 2003, Numer. Linear Algebra Appl..

[20]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[21]  Cornelis W. Oosterlee,et al.  Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..

[22]  Y. Notay,et al.  A robust algebraic multilevel preconditioner for non symmetric M-matrices , 2000 .

[23]  M. SIAMJ.,et al.  RESIDUAL-MINIMIZING KRYLOV SUBSPACE METHODS FOR STABILIZED DISCRETIZATIONS OF CONVECTION-DIFFUSION EQUATIONS∗ , 1998 .

[24]  Cornelis W. Oosterlee,et al.  On Three-Grid Fourier Analysis for Multigrid , 2001, SIAM J. Sci. Comput..

[25]  Yvan Notay,et al.  Analysis of Aggregation-Based Multigrid , 2008, SIAM J. Sci. Comput..

[26]  L. Trefethen Spectra and pseudospectra , 2005 .

[27]  Jim E. Jones,et al.  AMGE Based on Element Agglomeration , 2001, SIAM J. Sci. Comput..

[28]  Maxim A. Olshanskii,et al.  Convergence Analysis of a Multigrid Method for a Convection-Dominated Model Problem , 2004, SIAM J. Numer. Anal..

[29]  Irad Yavneh,et al.  Coarse-Grid Correction for Nonelliptic and Singular Perturbation Problems , 1998, SIAM J. Sci. Comput..

[30]  Artem Napov,et al.  An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..

[31]  Arnold Reusken,et al.  Convergence analysis of a multigrid method for convection–diffusion equations , 2002, Numerische Mathematik.

[32]  T. Manteuffel,et al.  Adaptive Smoothed Aggregation ( α SA ) Multigrid ∗ , 2005 .

[33]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[34]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[35]  Arnold Reusken,et al.  A Multigrid Method Based on Incomplete Gaussian Elimination , 1996, Numer. Linear Algebra Appl..

[36]  P. M. De Zeeuw,et al.  Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .

[37]  Achi Brandt,et al.  Fast Multigrid Solution of the Advection Problem with Closed Characteristics , 1998, SIAM J. Sci. Comput..

[38]  Yvan Notay,et al.  Recursive Krylov‐based multigrid cycles , 2008, Numer. Linear Algebra Appl..

[39]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[40]  Ray S. Tuminaro,et al.  A New Petrov--Galerkin Smoothed Aggregation Preconditioner for Nonsymmetric Linear Systems , 2008, SIAM J. Sci. Comput..