Three-Dimensional Boundary Layer Theory

Publisher Summary This chapter describes a unified theory of the three-dimensional boundary layer. The differential equation for the laminar compressible boundary layer in a “geodesic” coordinate system, which is suitable for all problems, is reviewed in the chapter. The chapter deals with problems of rotating disks and fluids. These problems afford a nice insight into the nature of secondary flow and are not lacking in technological importance, bearing as they do on the problems of compressor theory and meteorology. A number of problems concerned with the flight of three-dimensional bodies, beginning with the boundary layer of surfaces of revolution and continuing to a class of problems related to yawed wings and conical surfaces. The concepts of boundary layer displacement and of separation are generalized to three dimensions, and a number of flows are considered that are analyzed as perturbations of plane or axially symmetric cases. The separation problem in three-dimensional cases comes in two parts that includes the question of existence of an encapsulated bubble of fluid in the boundary layer, enclosing a system of vortices and the question of occurrence of an eruption of the boundary layer.

[1]  W. R. Sears,et al.  The Boundary Layer of Yawed Cylinders , 1948 .

[2]  G. Kuerti The Laminar Boundary Layer in Compressible Flow , 1951 .

[3]  L. Howarth CXXIX. Note on the boundary layer on a rotating sphere , 1951 .

[4]  G. Taylor,et al.  THE BOUNDARY LAYER IN THE CONVERGING NOZZLE OF A SWIRL ATOMIZER , 1950 .

[5]  G. Batchelor NOTE ON A CLASS OF SOLUTIONS OF THE NAVIER-STOKES EQUATIONS REPRESENTING STEADY ROTATIONALLY-SYMMETRIC FLOW , 1951 .

[6]  N. Rott,et al.  Simplified Laminar Boundary-Layer Calculations for Bodies of Revolution and Yawed Wings , 1952 .

[7]  L. Howarth,et al.  XXV. The boundary layer in three dimensional flow.—Part I. Derivation of the equations for flow along a general curved surface , 1951 .

[8]  C. Lin,et al.  On the stability of two-dimensional parallel flows. I. General theory , 1945 .

[9]  W. R. Sears Potential Flow Around a Rotating Cylindrical Blade , 1950 .

[10]  A. Mager Three-Dimensional Laminar Boundary Layer with Small Cross-Flow , 1954 .

[11]  E. Truckenbrodt,et al.  Ein Quadraturverfahren zur Berechnung der laminaren und turbulenten Reibungsschicht bei ebener und rotationssymmetrischer Strömung , 1952 .

[12]  Lester Lees,et al.  The stability of the laminar boundary layer in a compressible fluid , 1946 .

[13]  F. Moore,et al.  Three-dimensional compressible laminar boundary-layer flow , 1951 .

[14]  L. Howarth Rayleigh's problem for a semi-infinite plate , 1950, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  D. R. Hartree,et al.  On an equation occurring in Falkner and Skan's approximate treatment of the equations of the boundary layer , 1937, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  Dean R. Chapman,et al.  Temperature and Velocity Profiles in the Compressible Laminar Boundary Layer with Arbitrary Distribution of Surface Temperature , 1949 .

[17]  G. M. Low The compressible laminar boundary layer with heat transfer and small pressure gradient , 1953 .

[18]  R. A. Seban,et al.  Skin-Friction and Heat-Transfer Characteristics of a Laminar Boundary Layer on a Cylinder in Axial Incompressible Flow , 1951 .

[19]  H. G. Loos A Simple Laminar Boundary Layer with Secondary Flow , 1955 .

[20]  W. Mangler Zusammenhang zwischen ebenen und rotationssymmetrischen Grenzschichten in kompressiblen Flüssigkeiten , 1948 .

[21]  C. R. Illingworth Steady flow in the laminar boundary layer of a gas , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  C. R. Illingworth XLII. The laminar boundary layer of a rotating body of revolution , 1953 .

[23]  C C Lin,et al.  On the Stability of Two-Dimensional Parallel Flows. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[24]  F. Moore Laminar boundary layer on cone in supersonic flow at large angle of attack , 1953 .

[25]  F. Moore Three-Dimensional Laminar Boundary-Layer Flow , 1953 .

[26]  U. T. Bödewadt Die Drehströmung über festem Grunde , 1940 .

[27]  L. Howarth THE BOUNDARY LAYER IN THREE DIMENSIONAL FLOW. PART II. THE FLOW NEAR A STAGNATION POINT , 1951 .

[28]  Knox T. Millsaps,et al.  Heat Transfer by Laminar Flow from a Rotating Plate , 1951 .

[29]  J. Wilkinson Some Examples of Three-Dimensional Effects in Boundary Layer Flow , 1954 .

[30]  Eli Reshotko,et al.  Similar Solutions for the Compressible Laminar Boundary Layer with Heat Transfer and Pressure Gradient , 1955 .

[31]  G. Carrier The boundary layer in a corner , 1947 .

[32]  Laurence Eugene Fogarty The Laminar Boundary Layer on a Rotating Blade , 1951 .

[33]  Harry Ashkenas,et al.  Investigation of the Turbulent Boundary Layer on a Yawed Flat Plate , 1955 .

[34]  D. Dunn,et al.  On the Stability of the Laminar Boundary Layer in a Compressible Fluid , 1953 .

[35]  J. C. Cooke On Pohlhausen's Method with Application to a Swirl Problem of Taylor , 1952 .

[36]  S. Ostrach An analysis of laminar free-convection flow and heat transfer about a flat plate parallel to the direction of the generating body force , 1953 .

[37]  J. M. Wild,et al.  The Boundary Layer of Yawed Infinite Wings , 1949 .

[38]  K. Stewartson,et al.  Correlated incompressible and compressible boundary layers , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  N. Gregory,et al.  On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk , 1955, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[40]  J. C. Cooke,et al.  THE FLOW OF FLUID ALONG CORNERS AND EDGES , 1953 .

[41]  John C. Martin On Magnus Effects Caused by the Boundary-Layer Displacement Thickness on Bodies of Revolution at Small Angles of Attack , 1957 .

[42]  A. D. Young,et al.  The profile drag of yawed wings of infinite span , 1950 .

[43]  A. Mager Thick laminar boundary layer under sudden lateral perturbation , 1955 .

[44]  H. Squire On the Stability for Three-Dimensional Disturbances of Viscous Fluid Flow between Parallel Walls , 1933 .

[45]  K. Stewartson On the flow between two rotating coaxial disks , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[46]  Franklin K Moore Displacement effect of a three-dimensional boundary layer , 1952 .

[47]  L. G. Loitsianskii,et al.  On motion of fluid in boundary layer near line of intersection of two planes , 1951 .

[48]  M. Lighthill,et al.  The axisymmetric boundary layer on a long thin cylinder , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[49]  A. G. Hansen,et al.  Laminar boundary layer over flat plate in a flow having circular streamlines , 1952 .

[50]  E. R. V. Driest,et al.  Turbulent Boundary Layer on a Cone in a Supersonic Flow at Zero Angle of Attack , 1952 .

[51]  Arthur Mager,et al.  Generalization of Boundary-Layer Momentum-Integral Equations to Three-Dimensional Flows Including Those of Rotating System , 1952 .

[52]  W. Cochran The flow due to a rotating disc , 1934, Mathematical Proceedings of the Cambridge Philosophical Society.

[53]  T. Kármán Über laminare und turbulente Reibung , 1921 .

[54]  K. Stewartson The asymptotic boundary layer on a circular cylinder in axial incompressible flow , 1955 .

[55]  J. C. Cooke,et al.  The boundary layer of a class of infinite yawed cylinders , 1950, Mathematical Proceedings of the Cambridge Philosophical Society.