The Fuzzy Robust Anti-Sway Crane Control System

The Fuzzy Robust Anti-Sway Crane Control System The paper presents the pole placement approach to solve problem of conventional, based of proportional-derivative controllers, as well as robust, based of fuzzy controller, anti-sway crane control. The methods of robust gain-scheduling crane control system and selecting minimal set of operating points were shown. The fuzzy robust controller, based of Takagi-Sugeno-Kang inference system, was presented, as well as results of experiments, carried out using laboratory model of an overhead traveling crane, were shown in the paper. Zastosowanie logiki rozmytej w sterowaniu odpornym suwnicą pomostową W artykule przedstawione zostały metody budowy konwencjonalnych, opartych na regulatorach proporcjonalno-różniczkujących i metodzie lokowania biegunów, oraz odpornych, opartych na logice rozmytej układów sterowania mechanizmami ruchu suwnicy pomostowej. Przedstawiono rozwiązanie odpornego układu regulacji pozycji ładunku przemieszczanego przez suwnicę z zastosowaniem rozmytego systemu wnioskowania Takagi-Sugeno-Kang oraz rezultaty eksperymentów przeprowadzonych z zastosowaniem laboratoryjnego modelu suwnicy pomostowej.

[1]  Jaroslaw Smoczek,et al.  The neuro-fuzzy adaptive anti-sway crane control system , 2009, CTS 2009.

[2]  Jianqiang Yi,et al.  Anti-swing fuzzy control of overhead traveling crane , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[3]  Mohamed B. Trabia,et al.  Control of overhead cranes using a fuzzy logic controller , 2000, J. Intell. Fuzzy Syst..

[4]  Maysam F. Abbod,et al.  Fuzzy Logic-Based Anti-Sway Control Design for Overhead Cranes , 2000, Neural Computing & Applications.

[5]  G. L. Gissinger,et al.  Fuzzy control of an overhead crane performance comparison with classic control , 1995 .

[6]  J. Y. Lew,et al.  Experimental study of anti-swing crane control for a varying load , 2003, Proceedings of the 2003 American Control Conference, 2003..

[7]  Juan A. Méndez,et al.  An Application of a Neural Self-Tuning Controller to an Overhead Crane , 1999, Neural Computing & Applications.

[8]  Alessandro Giua,et al.  Observer-controller design for cranes via Lyapunov equivalence , 1999, at - Automatisierungstechnik.

[9]  Jaroslaw Smoczek,et al.  Human - Machine Interface Implementation in Designing Crane Control Based on Fuzzy Logic Algorithm , 2008 .