On the Hardness of Approximating Stopping and Trapping Sets in LDPC Codes

We prove that approximating the size of the smallest trapping set in Tanner graphs of linear block codes, and more restrictively, LDPC codes, is NP-hard. The proof techniques rely on reductions from three NP-hard problems, the set cover, minimum three-dimensional matching, and the minimum Hamming distance problem. The ramifications of our findings are that methods used for estimating the height of the error-floor of long LDPC codes, centered around trapping set enumeration, cannot provide accurate worst-case performance predictions.

[1]  Alexander Vardy,et al.  The Parametrized Complexity of Some Fundamental Problems in Coding Theory , 1999, SIAM J. Comput..

[2]  O. Milenkovic,et al.  Algorithmic and combinatorial analysis of trapping sets in structured LDPC codes , 2005, 2005 International Conference on Wireless Networks, Communications and Mobile Computing.

[3]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[4]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[5]  Michael Chertkov,et al.  Instanton analysis of Low-Density Parity-Check codes in the error-floor regime , 2006, 2006 IEEE International Symposium on Information Theory.

[6]  Alexander Vardy,et al.  Algorithmic complexity in coding theory and the minimum distance problem , 1997, STOC '97.

[7]  Stephen G. Wilson,et al.  A General Method for Finding Low Error Rates of LDPC Codes , 2006, ArXiv.

[8]  V. S. Anil Kumar,et al.  Hardness of Set Cover with Intersection 1 , 2000, ICALP.

[9]  Peter Damaschke,et al.  The union of minimal hitting sets: Parameterized combinatorial bounds and counting , 2007, J. Discrete Algorithms.

[10]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[11]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[12]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[13]  Øyvind Ytrehus,et al.  An Algorithm to Find All Small-Size Stopping Sets of Low-Density Parity-Check Matrices , 2007, 2007 IEEE International Symposium on Information Theory.

[14]  David J. C. MacKay,et al.  Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check cCodes , 2003, MFCSIT.

[15]  Ali Emre Pusane,et al.  On the error-correcting capability of LDPC codes , 2008, Probl. Inf. Transm..

[16]  Alexander Vardy,et al.  Which codes have cycle-free Tanner graphs? , 1999, IEEE Trans. Inf. Theory.

[17]  Frances A. Rosamond,et al.  Parameterized Complexity News , 2009 .

[18]  Markus Bläser,et al.  Computing small partial coverings , 2003, Inf. Process. Lett..

[19]  Madhu Sudan,et al.  Hardness of approximating the minimum distance of a linear code , 1999, IEEE Trans. Inf. Theory.

[20]  Alexander Vardy,et al.  The intractability of computing the minimum distance of a code , 1997, IEEE Trans. Inf. Theory.

[21]  Peter Damaschke,et al.  The union of minimal hitting sets: Parameterized combinatorial bounds and counting , 2009, J. Discrete Algorithms.

[22]  Michael Horstein,et al.  Review of 'Low-Density Parity-Check Codes' (Gallager, R. G.; 1963) , 1964, IEEE Transactions on Information Theory.

[23]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[24]  Luca Trevisan,et al.  Improved Non-approximability Results for Minimum Vertex Cover with Density Constraints , 1999, Electron. Colloquium Comput. Complex..

[25]  Ran Raz,et al.  A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP , 1997, STOC '97.

[26]  Giorgio Ausiello,et al.  Structure Preserving Reductions among Convex Optimization Problems , 1980, J. Comput. Syst. Sci..

[27]  H. Vincent Poor,et al.  Exhausting Error-Prone Patterns in LDPC Codes , 2006, ArXiv.

[28]  L. Sunil Chandran,et al.  Hardness of Approximation Results for the Problem of Finding the Stopping Distance in Tanner Graphs , 2006, FSTTCS.

[29]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[30]  Jacques Stern,et al.  The Hardness of Approximate Optima in Lattices, Codes, and Systems of Linear Equations , 1997, J. Comput. Syst. Sci..

[31]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[32]  M. Fellows,et al.  An improved fixed parameter tractable algorithm for vertex cover , 1999 .

[33]  Gideon Schechtman,et al.  Approximating bounded 0-1 integer linear programs , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[34]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[35]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[36]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[37]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[38]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[39]  P. Orponen,et al.  On Approximation Preserving Reductions: Complete Problems and Robust Measures (Revised Version) , 1987 .

[40]  D. Harkins,et al.  Simultaneous Authentication of Equals: A Secure, Password-Based Key Exchange for Mesh Networks , 2008, 2008 Second International Conference on Sensor Technologies and Applications (sensorcomm 2008).

[41]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[42]  Rüdiger L. Urbanke,et al.  Exact thresholds and optimal codes for the binary-symmetric channel and Gallager's decoding algorithm A , 2000, IEEE Transactions on Information Theory.

[43]  Madhu Sudan,et al.  Maximum-likelihood decoding of Reed-Solomon codes is NP-hard , 1996, IEEE Transactions on Information Theory.