Gravure printing inverted organic solar cells: The influence of ink properties on film quality and device performance

Abstract We investigate the relationship between processing parameters and the device performance of gravure printed organic solar cells. Ink viscosity, surface energy and surface roughness are studied to optimise the printing process. Surfactants, additives and surface modification by plasma cleaning are utilised to achieve homogeneous printing of multilayer OPV device architectures. It is found that use of high boiling point solvents with high solubilities leads to a desirable surface morphology. The use of a printed metal oxide electrode within the inverted structure leads to devices with lifetimes exceeding those of devices in standard structures without the need for encapsulation.

[1]  Martin A. Green,et al.  Solar cell efficiency tables (version 37) , 2011 .

[2]  J. M. Bradley Determining the dispersive and polar contributions to the surface tension of water-based printing ink as a function of surfactant surface excess , 2005 .

[3]  C. J. M. Emmott,et al.  Environmental and economic assessment of ITO-free electrodes for organic solar cells , 2012 .

[4]  Ronn Andriessen,et al.  ITO-free flexible organic solar cells with printed current collecting grids , 2011 .

[5]  Donal D. C. Bradley,et al.  Polymer Field‐Effect Transistors Fabricated by the Sequential Gravure Printing of Polythiophene, Two Insulator Layers, and a Metal Ink Gate , 2010 .

[6]  Christoph J. Brabec,et al.  Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact , 2006 .

[7]  Claudia N. Hoth,et al.  Printing highly efficient organic solar cells. , 2008, Nano letters.

[8]  F. Krebs,et al.  A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies , 2009 .

[9]  Garry Rumbles,et al.  Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition , 2008 .

[10]  Mikkel Jørgensen,et al.  ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules , 2011 .

[11]  A. Carlo,et al.  Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties , 2011 .

[12]  Frederik C. Krebs,et al.  All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps , 2009 .

[13]  Ian M. Thomas,et al.  Non‐Newtonian flow effects during spin coating large‐area optical coatings with colloidal suspensions , 1992 .

[14]  Donal D. C. Bradley,et al.  Gravure printing for three subsequent solar cell layers of inverted structures on flexible substrates , 2011 .

[15]  Yong Cao,et al.  Polymer solar cells: Recent development and possible routes for improvement in the performance , 2010 .

[16]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[17]  Thomas Kirchartz,et al.  Modeling Nongeminate Recombination in P3HT:PCBM Solar Cells , 2011 .

[18]  Y. Geng,et al.  Solvent vapor‐induced self assembly and its influence on optoelectronic conversion of poly(3‐hexylthiophene): Methanofullerene bulk heterojunction photovoltaic cells , 2009 .

[19]  Frederik C. Krebs,et al.  Business, market and intellectual property analysis of polymer solar cells , 2010 .

[20]  R. Österbacka,et al.  Roll-to-Roll Fabrication of Bulk Heterojunction Plastic Solar Cells using the Reverse Gravure Coating Technique , 2008 .

[21]  Vivek Subramanian,et al.  Patternable polymer bulk heterojunction photovoltaic cells on plastic by rotogravure printing , 2009 .

[22]  Hui Joon Park,et al.  Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells , 2010 .

[23]  Helmut Kipphan,et al.  Handbook of Print Media: Technologies and Production Methods , 2006 .

[24]  J. Nelson,et al.  Extracting Microscopic Device Parameters from Transient Photocurrent Measurements of P3HT:PCBM Solar Cells , 2012 .

[25]  Paul H. Wöbkenberg,et al.  Low-voltage organic transistors based on solution processed semiconductors and self-assembled monolayer gate dielectrics , 2008 .

[26]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[27]  Frederik C. Krebs,et al.  Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing , 2009 .

[28]  Chang Su Kim,et al.  Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer , 2009 .

[29]  Jukka Hast,et al.  High efficient plastic solar cells fabricated with a high-throughput gravure printing method , 2010 .

[30]  Bumjoon J. Kim,et al.  The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance. , 2008, Journal of the American Chemical Society.

[31]  Martin A. Green,et al.  Solar cell efficiency tables , 1993 .

[32]  Claudia N. Hoth,et al.  High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends , 2007 .

[33]  Jan Genoe,et al.  Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells , 2009 .

[34]  Frederik C. Krebs,et al.  Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment , 2011 .

[35]  Frederik C. Krebs,et al.  A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions , 2011 .

[36]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[37]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[38]  Christoph J. Brabec,et al.  Interface materials for organic solar cells , 2010 .

[39]  F. Krebs Pad printing as a film forming technique for polymer solar cells , 2009 .

[40]  Daniel Y. Kwok,et al.  Contact angle measurement and contact angle interpretation , 1999 .

[41]  Soeren Steudel,et al.  Nanoparticle-based, spray-coated silver top contacts for efficient polymer solar cells , 2009 .

[42]  Jin Young Kim,et al.  Air‐Stable Polymer Electronic Devices , 2007 .

[43]  F. Krebs,et al.  Using light-induced thermocleavage in a roll-to-roll process for polymer solar cells. , 2010, ACS applied materials & interfaces.

[44]  T. Wen,et al.  Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells , 2008 .

[45]  Frederik C. Krebs,et al.  Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide , 2009 .

[46]  Alex K.-Y. Jen,et al.  Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes , 2009 .