Sparse Bayesian vector autoregressions in huge dimensions

We develop a Bayesian vector autoregressive (VAR) model that is capable of handling vast dimensional information sets. Three features are introduced to permit reliable estimation of the model. First, we assume that the reduced-form errors in the VAR feature a factor stochastic volatility structure, allowing for conditional equation-by-equation estimation. Second, we apply a Dirichlet-Laplace prior to the VAR coefficients to cure the curse of dimensionality. Finally, since simulation-based methods are needed to simulate from the joint posterior distribution, we utilize recent innovations to efficiently sample from high-dimensional multivariate Gaussian distributions that improve upon recent algorithms by large margins. In the empirical exercise we apply the model to US data and evaluate its forecasting capabilities.

[1]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[2]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[3]  M. Pitt Strategic Innovation: Statements of the Art or in Search of a Chimera? , 1998 .

[4]  Wolfgang Hörmann,et al.  Generating generalized inverse Gaussian random variates , 2013, Statistics and Computing.

[5]  Gregor Kastner,et al.  Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models , 2016, 1602.08154.

[6]  Gregor Kastner,et al.  Dealing with Stochastic Volatility in Time Series Using the R Package stochvol , 2016, 1906.12134.

[7]  J. Geweke,et al.  Comparing and Evaluating Bayesian Predictive Distributions of Asset Returns , 2008 .

[8]  C. Sims,et al.  Bayesian methods for dynamic multivariate models , 1998 .

[9]  T. Sargent,et al.  Evolving Post-World War II U.S. Inflation Dynamics , 2001, NBER Macroeconomics Annual.

[10]  Nikolas Kantas,et al.  Bayesian parameter inference for partially observed stopped processes , 2012, Stat. Comput..

[11]  Debdeep Pati,et al.  Posterior contraction in sparse Bayesian factor models for massive covariance matrices , 2012, 1206.3627.

[12]  Serena Ng,et al.  Working Paper Series , 2019 .

[13]  Florian Huber,et al.  Should I stay or should I go? A latent threshold approach to large‐scale mixture innovation models , 2016, Journal of Applied Econometrics.

[14]  Richard A. Davis,et al.  Sparse Vector Autoregressive Modeling , 2012, 1207.0520.

[15]  Yukai Yang,et al.  A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior , 2019, Journal of Time Series Econometrics.

[16]  N. Pillai,et al.  Dirichlet–Laplace Priors for Optimal Shrinkage , 2014, Journal of the American Statistical Association.

[17]  Dimitris Korobilis,et al.  Large Time-Varying Parameter VARs , 2012 .

[18]  D. Mare,et al.  The Oxford Handbook of Economic Forecasting , 2015, J. Oper. Res. Soc..

[19]  James G. Scott,et al.  Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .

[20]  Lendie Follett,et al.  Achieving Parsimony in Bayesian VARs with the Horseshoe Prior , 2017, 1709.07524.

[21]  Dimitris Korobilis,et al.  Essex Finance Centre Working Paper Series Working Paper No 14 : 12-2016 “ Adaptive Minnesota Prior for High-Dimensional Vector Autoregressions ” “ , 2016 .

[22]  Todd E. Clark,et al.  Common Drifting Volatility in Large Bayesian VARs , 2012 .

[23]  Rodney W. Strachan,et al.  On the evolution of the monetary policy transmission mechanism , 2009 .

[24]  M. Pitt,et al.  Time Varying Covariances: A Factor Stochastic Volatility Approach (with discussion , 1998 .

[25]  Robert B. Litterman,et al.  Forecasting and Conditional Projection Using Realistic Prior Distributions , 1983 .

[26]  Gregor Kastner,et al.  Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models , 2014, Comput. Stat. Data Anal..

[27]  D. Giannone,et al.  Large Bayesian vector auto regressions , 2010 .

[28]  Dimitris Korobilis,et al.  Adaptive hierarchical priors for high-dimensional vector autoregressions , 2019 .

[29]  Lendie Follett,et al.  Achieving parsimony in Bayesian vector autoregressions with the horseshoe prior , 2019, Econometrics and Statistics.

[30]  Gregor Kastner,et al.  Modeling Univariate and Multivariate Stochastic Volatility in R with stochvol and factorstochvol , 2019, J. Stat. Softw..

[31]  G. Koop,et al.  Bayesian Compressed Vector Autoregressions , 2017, Journal of Econometrics.

[32]  Joshua C. C. Chan,et al.  Fast Computation of the Deviance Information Criterion for Latent Variable Models , 2014, Comput. Stat. Data Anal..

[33]  Roberto Casarin,et al.  Sparse Graphical Vector Autoregression: A Bayesian Approach , 2014 .

[34]  Robert B. Litterman Forecasting with Bayesian Vector Autoregressions-Five Years of Experience , 1984 .

[35]  Todd E. Clark,et al.  Macroeconomic Forecasting Performance under Alternative Specifications of Time-Varying Volatility , 2015 .

[36]  B. Mallick,et al.  Fast sampling with Gaussian scale-mixture priors in high-dimensional regression. , 2015, Biometrika.

[37]  S. Frühwirth-Schnatter,et al.  Stochastic model specification search for Gaussian and partial non-Gaussian state space models , 2010 .

[38]  James H. Stock,et al.  Dynamic Factor Models , 2011 .

[39]  Todd E. Clark,et al.  Large Vector Autoregressions with asymmetric priors and time varying volatilities ∗ , 2002 .

[40]  Massimiliano Marcellino,et al.  Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors , 2019, Journal of Econometrics.

[41]  G. Koop Forecasting with Medium and Large Bayesian VARs , 2013 .

[42]  G. Kastner Sparse Bayesian time-varying covariance estimation in many dimensions , 2016, Journal of Econometrics.

[43]  Dongchu Sun,et al.  Bayesian stochastic search for VAR model restrictions , 2008 .

[44]  Florian Huber,et al.  Adaptive Shrinkage in Bayesian Vector Autoregressive Models , 2019 .

[45]  Giorgio E. Primiceri Time Varying Structural Vector Autoregressions and Monetary Policy , 2002 .

[46]  M. West,et al.  Bayesian Dynamic Factor Models and Portfolio Allocation , 2000 .

[47]  Giorgio E. Primiceri,et al.  Time Varying Structural Vector Autoregressions and Monetary Policy , 2002 .

[48]  J. Griffin,et al.  Inference with normal-gamma prior distributions in regression problems , 2010 .

[49]  V. Rocková,et al.  Dynamic Variable Selection with Spike-and-Slab Process Priors , 2017, Bayesian Analysis.

[50]  Sven Ove Hansson,et al.  Measuring Uncertainty , 2009, Stud Logica.

[51]  Todd E. Clark Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility , 2011 .

[52]  C. Sims,et al.  Were There Regime Switches in U.S. Monetary Policy? , 2004 .

[53]  Todd E. Clark,et al.  Large Vector Autoregressions with Asymmetric Priors , 2015 .

[54]  Sylvia Fruhwirth-Schnatter,et al.  Achieving shrinkage in a time-varying parameter model framework , 2016, Journal of Econometrics.