An isotropic dynamically consistent gradient elasticity model derived from a 2D lattice

This paper presents a derivation of a second-order isotropic continuum from a 2D lattice. The derived continuum is isotropic and dynamically consistent in the sense that it is unconditionally stable and prohibits the infinite speed of energy propagation. The Lagrangian density of the continuum is obtained from the Lagrange function of the underlying lattice. This density is used to obtain the expressions for standard and higher-order stresses in direct correspondence with the equations of the continuum motion. The derived continuum is characterized by two additional parameters relative to the classical elastic continuum. These are the characteristic lengthscale and a dimensionless continualization parameter, which characterizes indirectly the timescale of the derived continuum. The margins for the latter parameter are found from the stability analysis. It is envisaged that the continualization parameter could be measured employing a high-frequency pulse propagating along the surface of the continuum. Excitation and propagation of such pulse is studied theoretically in this paper.

[1]  C. Sun,et al.  Modeling micro-inertia in heterogeneous materials under dynamic loading , 2002 .

[2]  V. Pal'mov Fundamental equations of the theory of asymmetric elasticity , 1964 .

[3]  J. Pamin,et al.  Gradient-dependent plasticity in numerical simulation of localization phenomena , 1994 .

[4]  John A. Hudson,et al.  Comprehensive rock engineering : principles, practice, and projects , 1993 .

[5]  E. Aifantis,et al.  On the role of microstructure in the behavior of soils: Effects of higher order gradients and internal inertia , 1994 .

[6]  M. Ashby,et al.  Strain gradient plasticity: Theory and experiment , 1994 .

[7]  Ioannis Vardoulakis,et al.  Torsional surface waves in a gradient-elastic half-space , 2000 .

[8]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[9]  Hussein M. Zbib,et al.  Strain gradients and continuum modeling of size effect in metal matrix composites , 1997 .

[10]  J. Fish,et al.  A Dispersive Model for Wave Propagation in Periodic Heterogeneous Media Based on Homogenization With Multiple Spatial and Temporal Scales , 2001 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Elias C. Aifantis,et al.  The physics of plastic deformation , 1987 .

[13]  E. Aifantis,et al.  On Some Aspects in the Special Theory of Gradient Elasticity , 1997 .

[14]  D. Bogy,et al.  THE EFFECT OF COUPLE-STRESSES ON SINGULARITIES DUE TO DISCONTINUOUS LOADINGS. , 1967 .

[15]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[16]  Jacob Fish,et al.  Non‐local dispersive model for wave propagation in heterogeneous media: one‐dimensional case , 2002 .

[17]  Michael Ortiz,et al.  Fracture analysis of cellular materials: A strain gradient model , 1998 .

[18]  Fusao Oka,et al.  Dispersion and wave propagation in discrete and continuous models for granular materials , 1996 .

[19]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[20]  Ching S. Chang,et al.  Micro-mechanical modelling of granular material. Part 2: Plane wave propagation in infinite media , 2001 .

[21]  D. Gazis,et al.  Surface Elastic Waves in Cubic Crystals , 1960 .

[22]  K. Washizu Variational Methods in Elasticity and Plasticity , 1982 .

[23]  H. Askes,et al.  One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure: Part 2: Static and dynamic response , 2002 .

[24]  Andrei V. Metrikine,et al.  One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure: Part 1: Generic formulation , 2002 .

[25]  J. Awrejcewicz,et al.  Asymptotic approaches in mechanics: New parameters and procedures , 2003 .

[26]  H. G. Georgiadis,et al.  High-frequency Rayleigh waves in materials with micro-structure and couple-stress effects , 2003 .

[27]  I. Vardoulakis,et al.  Buckling of layered elastic media: A cosserat-continuum approach and its validation , 1990 .

[28]  Zhen Chen,et al.  One-Dimensional Softening With Localization , 1986 .

[29]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[30]  Ching S. Chang,et al.  Micro-mechanical modelling of granular material. Part 1: Derivation of a second-gradient micro-polar constitutive theory , 2001 .

[31]  J. Bardet,et al.  The asymmetry of stress in granular media , 2001 .

[32]  Andrew G. Glen,et al.  APPL , 2001 .

[33]  Andrei V. Metrikine,et al.  Higher-order continua derived from discrete media: continualisation aspects and boundary conditions , 2005 .

[34]  X. Markenscoff,et al.  Conservation integrals in couple stress elasticity , 2000 .

[35]  D. Bogy,et al.  The effect of couple-stresses on the corner singularity due to an asymmetric shear loading , 1968 .

[36]  A. Cemal Eringen,et al.  Nonlinear theory of micro-elastic solids—II☆ , 1964 .

[37]  A. Dyskin,et al.  On the Possibility of Elastic Strain Localisation in a Fault , 2004 .

[38]  Andrei V. Metrikine,et al.  Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models , 2001 .

[39]  T. Belytschko,et al.  Localization limiters in transient problems , 1988 .

[40]  L. J. Sluys,et al.  Wave propagation, localisation and dispersion in softening solids : proefschrift , 1992 .

[41]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[42]  I. Kunin,et al.  Elastic Media with Microstructure II , 1982 .

[43]  K. G. Budden Wave Propagation , 1969, Nature.

[44]  Y. Weitsman Couple-Stress Effects on Stress Concentration Around a Cylindrical Inclusion in a Field of Uniaxial Tension , 1965 .

[45]  B. M. Fulk MATH , 1992 .

[46]  E. Aifantis On the role of gradients in the localization of deformation and fracture , 1992 .

[47]  I. Andrianov The specific features of the limiting transition from a discrete elastic medium to a continuous one , 2002 .

[48]  M. B. Rubin,et al.  Continuum model of dispersion caused by an inherent material characteristic length , 1995 .

[49]  Martin Krause,et al.  Comparison of pulse-echo methods for testing concrete , 1997 .

[50]  Elena Pasternak,et al.  Generalised homogenisation procedures for granular materials , 2005 .

[51]  Nicolas Triantafyllidis,et al.  A gradient approach to localization of deformation. I. Hyperelastic materials , 1986 .

[52]  H. Askes,et al.  A classification of higher-order strain-gradient models in damage mechanics , 2003 .

[53]  I. A. Viktorov Rayleigh and Lamb Waves , 1967 .

[54]  J. W. Humberston Classical mechanics , 1980, Nature.

[55]  J. Hutchinson,et al.  STEADY-STATE CRACK GROWTH AND WORK OF FRACTURE FOR SOLIDS CHARACTERIZED BY STRAIN GRADIENT PLASTICITY , 1997 .

[56]  V. Erofeyev Wave processes in solids with microstructure , 2003 .

[57]  R. S. Rivlin,et al.  Multipolar continuum mechanics , 1964 .

[58]  R. Lakes,et al.  Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam , 1994, Journal of Materials Science.

[59]  Bhushan Lal Karihaloo IUTAM symposium on analytical and computational fracture mechanics of non-homogeneous materials , 2002 .

[60]  Path Independent Integrals for Cosserat Continua and Application to Crack Problems , 2002 .

[61]  I. Vardoulakis,et al.  Bifurcation Analysis in Geomechanics , 1995 .

[62]  L. J. Sluys,et al.  Explicit and implicit gradient series in damage mechanics , 2002 .

[63]  Hans Muhlhaus,et al.  A variational principle for gradient plasticity , 1991 .

[64]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[65]  Norman A. Fleck,et al.  A reformulation of strain gradient plasticity , 2001 .