Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua

We study plane waves in second gradient solids and their reflection and transmission at plane displacement discontinuity surfaces. The needed extension of the treatment adopted to study plane wave propagation in Cauchy continua is not straightforward and is developed here. In particular, the balance of mechanical energy valid for second gradient continua is deduced. The presented results may be of interest as many boundary layer phenomena can be accounted for by second gradient models. We prove that second gradient elastic moduli may influence, in a measurable manner, how planar waves behave at discontinuity surfaces: the novel results presented here can be the basis of experimental procedures to estimate some among these moduli. We explicitly remark that reflection and transmission coefficients which we have estimated show a significant dependence on frequency, which indeed makes easier to conceive effective measurement methods.

[1]  On the principle of virtual powers in continuum mechanics , 2006 .

[2]  C. Polizzotto Strain-gradient elastic-plastic material models and assessment of the higher order boundary conditions , 2007 .

[3]  Paul Steinmann,et al.  A unifying treatise on variational principles for gradient and micromorphic continua , 2005 .

[4]  Decomposition and integral representation of Cauchy interactions associated with measures , 2001 .

[5]  Pierre Seppecher,et al.  Radius and surface tension of microscopic bubbles by second gradient theory , 1995, 0808.0312.

[6]  E. Aifantis Update on a class of gradient theories , 2003 .

[7]  Albert Edward Green,et al.  Multipolar continuum mechanics: functional theory I , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[8]  Antonio Carcaterra,et al.  Shock spectral analysis of elastic systems impacting on the water surface , 2000 .

[9]  Henri Gouin,et al.  Nucleation of spherical shell-like interfaces by second gradient theory: numerical simulations , 1996, 0906.1897.

[10]  Ioannis Vardoulakis,et al.  Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics , 2001 .

[11]  Nicolas Triantafyllidis,et al.  On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models , 1993 .

[12]  Olivier Coussy,et al.  Second gradient poromechanics , 2007 .

[13]  Yang Yang,et al.  Higher-Order Continuum Theory Applied to Fracture Simulation of Nanoscale Intergranular Glassy Film , 2011 .

[14]  Pierre Seppecher,et al.  A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .

[15]  Robert Charlier,et al.  A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models , 2006 .

[16]  Antonio Carcaterra,et al.  Prediction of the Compressible Stage Slamming Force on Rigid and Elastic Systems Impacting on the Water Surface , 2000 .

[17]  A. Misra,et al.  Mechanistic Model for Contact between Rough Surfaces , 1997 .

[18]  N. Zani,et al.  On the Balance Equation for Stresses Concentrated on Curves , 2008 .

[19]  P. Seppecher,et al.  Edge Contact Forces and Quasi-Balanced Power , 1997, 1007.1450.

[20]  S. Forest Mechanics of generalized continua: construction by homogenizaton , 1998 .

[21]  P. Seppecher Equilibrium of a Cahn-Hilliard fluid on a wall: influence of the wetting properties of the fluid upon the stability of a thin liquid film , 1993 .

[22]  G. Maugin,et al.  The method of virtual power in continuum mechanics application to media presenting singular surfaces and interfaces , 1986 .

[23]  R. Toupin Elastic materials with couple-stresses , 1962 .

[24]  J. E. Dunn,et al.  On the thermomechanics of interstitial working , 1985 .

[25]  Nicolas Triantafyllidis,et al.  An Investigation of Localization in a Porous Elastic Material Using Homogenization Theory , 1984 .

[26]  A. Eringen,et al.  On the equations of the electrodynamics of deformable bodies of finite extent , 1977 .

[27]  Holm Altenbach,et al.  Mechanics of Generalized Continua , 2010 .

[28]  Marco Degiovanni,et al.  Cauchy Fluxes Associated with Tensor Fields Having Divergence Measure , 1999 .

[29]  A Carcaterra,et al.  Near-irreversibility in a conservative linear structure with singularity points in its modal density. , 2006, The Journal of the Acoustical Society of America.

[30]  Stefan Diebels,et al.  A second‐order homogenization procedure for multi‐scale analysis based on micropolar kinematics , 2007 .

[31]  G. Maugin,et al.  Virtual power and thermodynamics for electromagnetic continua with interfaces , 1986 .

[32]  P. G. de Gennes,et al.  Some effects of long range forces on interfacial phenomena , 1981 .

[33]  3D-2 Application of a Micromechanical Model to Wave Propagation Through Nonlinear Rough Interfaces Under Stress , 2006, 2006 IEEE Ultrasonics Symposium.

[34]  M. Destrade,et al.  Waves in Nonlinear Pre-Stressed Materials , 2007 .

[35]  G. Maugin A relativistic version of the principle of virtual power , 1981 .

[36]  Nicolas Triantafyllidis,et al.  A gradient approach to localization of deformation. I. Hyperelastic materials , 1986 .

[37]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[38]  Glaucio H. Paulino,et al.  Strain Gradient Elasticity for Antiplane Shear Cracks: A Hypersingular Integrodifferential Equation Approach , 2002, SIAM J. Appl. Math..

[39]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[40]  Paul Steinmann,et al.  A unifying treatise of variational principles for two types of micropolar continua , 1997 .

[41]  W. Noll,et al.  On edge interactions and surface tension , 1990 .

[42]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[43]  A Carcaterra,et al.  Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems. , 2007, The Journal of the Acoustical Society of America.

[44]  J. Salençon Handbook of continuum mechanics , 2001 .

[45]  A. Musesti,et al.  Balanced Powers in Continuum Mechanics , 2003 .

[46]  P. Podio-Guidugli,et al.  Hypertractions and hyperstresses convey the same mechanical information , 2009, 0906.4199.

[47]  R. D. Mindlin,et al.  On first strain-gradient theories in linear elasticity , 1968 .

[48]  Antonio Carcaterra,et al.  Ensemble energy average and energy flow relationships for nonstationary vibrating systems , 2005 .

[49]  Nicolas Triantafyllidis,et al.  THE INFLUENCE OF SCALE SIZE ON THE STABILITY OF PERIODIC SOLIDS AND THE ROLE OF ASSOCIATED HIGHER ORDER GRADIENT CONTINUUM MODELS , 1996 .

[50]  Shiping Huang,et al.  Micromechanics Based Stress-Displacement Relationships of Rough Contacts: Numerical Implementation under Combined Normal and Shear Loading , 2009 .

[51]  M.O.M. Carvalho,et al.  Active control of waves in a Timoshenko beam , 2001 .

[52]  R. Al-Rub Modeling the interfacial effect on the yield strength and flow stress of thin metal films on substrates , 2008 .

[53]  Francesco dell’Isola,et al.  Boundary Conditions at Fluid-Permeable Interfaces in Porous Media: a Variational Approach , 2009 .

[54]  Elias C. Aifantis,et al.  Gradient Deformation Models at Nano, Micro, and Macro Scales , 1999 .

[55]  Gérard A. Maugin,et al.  The method of virtual power in continuum mechanics: Application to coupled fields , 1980 .

[56]  M. Lazar,et al.  Dislocations in second strain gradient elasticity , 2006 .

[57]  J. Bleustein A note on the boundary conditions of toupin's strain-gradient theory , 1967 .

[58]  Antonio Carcaterra,et al.  ENERGY FLOW UNCERTAINTIES IN VIBRATING SYSTEMS: DEFINITION OF A STATISTICAL CONFIDENCE FACTOR , 2003 .

[59]  Paulette Spencer,et al.  Scanning acoustic microscopy investigation of frequency-dependent reflectance of acid- etched human dentin using homotopic measurements , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[60]  Rock-Joint Micromechanics: Relationship of Roughness to Closure and Wave Propagation , 2011 .

[61]  Jean-Louis Guyader Vibration in Continuous Media , 2006 .

[62]  M. Šilhavý The existence of the flux vector and the divergence theorem for general Cauchy fluxes , 1985 .

[63]  Stefan Hurlebaus,et al.  Linear Elastic Waves , 2001 .

[64]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[65]  Micromechanical model of rough contact between rock blocks with application to wave propagation , 2008 .

[66]  M. Šilhavý Cauchy's stress theorem and tensor fields with divergences in Lp , 1991 .

[67]  H. Gouin,et al.  Relation entre l'équation de l'énergie et l'équation du mouvement en théorie de Korteweg de la capillarité , 1985 .

[68]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[69]  R. Rivlin,et al.  Simple force and stress multipoles , 1964 .

[70]  S. Vidoli,et al.  Generalized Hooke's law for isotropic second gradient materials , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[71]  V. Erofeyev Wave processes in solids with microstructure , 2003 .

[72]  Nicolas Triantafyllidis,et al.  Derivation of higher order gradient continuum theories in 2,3-D non-linear elasticity from periodic lattice models , 1994 .

[73]  R. S. Rivlin,et al.  Multipolar continuum mechanics , 1964 .

[74]  A. Misra,et al.  Effect of asperity damage on shear behavior of single fracture , 2002 .

[75]  V. L. Berdichevskiĭ Variational principles of continuum mechanics , 2009 .

[76]  Pierre Seppecher Etude des conditions aux limites en théorie du second gradient: cas de la capillarité , 1989 .

[77]  H. F. Tiersten,et al.  Effects of couple-stresses in linear elasticity , 1962 .

[78]  M. Lazar,et al.  Defects in gradient micropolar elasticity—I: screw dislocation , 2004 .

[79]  Sergey Gavrilyuk,et al.  Media with equations of state that depend on derivatives , 1996 .

[80]  On dislocations in a special class of generalized elasticity , 2005, cond-mat/0504291.

[81]  M. Lazar,et al.  Defects in gradient micropolar elasticity—II: edge dislocation and wedge disclination , 2004 .

[82]  M. Sokołowski Theory of couple-stresses in bodies with constrained rotations , 1970 .

[83]  Morvan Ouisse,et al.  Vibration sensitive behaviour of a connecting angle. Case of coupled beams and plates , 2003 .

[84]  Giulio Sciarra,et al.  A VARIATIONAL DEDUCTION OF SECOND GRADIENT POROELASTICITY PART I: GENERAL THEORY , 2008 .

[85]  A. Misra,et al.  Higher-Order Stress-Strain Theory for Damage Modeling Implemented in an Element-free Galerkin Formulation , 2010 .

[86]  Francesco dell’Isola,et al.  The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power , 1995 .

[87]  Edge-force densities and second-order powers , 2006 .

[88]  Paul Steinmann,et al.  On higher gradients in continuum-atomistic modelling , 2003 .

[89]  M. Lazar,et al.  Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity , 2005, cond-mat/0502023.