Hydroformylation of olefins produced in the Fischer—Tropsch synthesis

[1]  Magn. , 2020, Catalysis from A to Z.

[2]  N. Hales,et al.  The application of polymer-bound carbonylcobalt(0) species in linker chemistry and catalysis. , 2003, Organic & biomolecular chemistry.

[3]  J. Schraml,et al.  31P and 13C NMR spectra of cyclohexylphenylphosphines, tricyclohexylphosphine and triphenylphosphine , 1992 .

[4]  J. Kochi,et al.  Oxidation-reduction of carbonylcobalt cation-anion pairs in coupling to dimeric cobalt carbonyls , 1989 .

[5]  E. J. Moore,et al.  Kinetic and thermodynamic acidity of hydrido transition-metal complexes. 3. Thermodynamic acidity of common mononuclear carbonyl hydrides. , 1986, Journal of the American Chemical Society.

[6]  T. Allman,et al.  The basicity of phosphines , 1982 .

[7]  J. Atwood,et al.  The mechanism of substitution of dicobalt octacarbonyl , 1980 .

[8]  C. A. Tolman,et al.  Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis , 1977 .

[9]  P. Szabó,et al.  Phosphorus-containing cobalt carbonyls III. Monosubstituted derivatives of dicobalt octacarbonyl with phosphines and phosphites , 1968 .

[10]  C. A. Streuli,et al.  The Basicity of Phosphines , 1960 .

[11]  O. Kühl Phosphoros-31 NMR spectroscopy : a concise introduction for the synthetic organic and organometallic chemist , 2008 .

[12]  Thomas J. Meyer,et al.  Comprehensive coordination chemistry II : from biology to nanotechnology , 2004 .

[13]  A. R. Manning Infrared spectra of some derivatives of octacarbonyldicobalt , 1968 .