Plasmonic dark field microscopy

We propose plasmonic dark field microscopy, which utilizes a chip-scale integrated plasmonic multilayered structure to substitute the bulky and expensive conventional condenser optics. Experimental results show that we can get high contrast image using the compact, low-cost, and alignment free plasmonic dark field microscopy.

[1]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[2]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[3]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[4]  Zhaowei Liu,et al.  Super-resolution imaging by random adsorbed molecule probes. , 2008, Nano letters.

[5]  T. D. Harris,et al.  Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale , 1991, Science.

[6]  W H Weber,et al.  Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal. , 1979, Optics letters.

[7]  S. M. Prince,et al.  Alignment and tolerancing of a cardioid condenser , 2007, SPIE Optical Engineering + Applications.

[8]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[9]  E. Synge XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region , 1928 .

[10]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[11]  N. Thompson,et al.  Total internal reflection fluorescence. , 1984, Annual review of biophysics and bioengineering.

[12]  I. Smolyaninov,et al.  Magnifying Superlens in the Visible Frequency Range , 2006, Science.

[13]  S. Hell,et al.  Subdiffraction resolution in far-field fluorescence microscopy. , 1999, Optics letters.

[14]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[16]  R. Silbey,et al.  Molecular Fluorescence and Energy Transfer Near Interfaces , 2007 .

[17]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[18]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[19]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[20]  W. Barnes,et al.  Fluorescence near interfaces: The role of photonic mode density , 1998 .

[21]  J. O'keefe,et al.  Resolving Power of Visible Light , 1956 .

[22]  Yi Xiong,et al.  Far-field optical superlens. , 2007, Nano letters.

[23]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.