230 GHz VLBI OBSERVATIONS OF M87: EVENT‐HORIZON‐SCALE STRUCTURE DURING AN ENHANCED VERY‐HIGH‐ENERGY γ ?> ‐RAY STATE IN 2012

We report on 230 GHz (1.3 mm) VLBI observations of M87 with the Event Horizon Telescope using antennas on Mauna Kea in Hawaii, Mt. Graham in Arizona and Cedar Flat in California. For the first time, we have acquired 230 GHz VLBI interferometric phase information on M87 through measurement of closure phase on the triangle of long baselines. Most of the measured closure phases are consistent with 0 ◦ as expected by physically-motivated models for 230 GHz structure such as jet models and accretion disk models. The brightness temperature of the event-horizon-scale structure is � 1 × 10 10 K derived from the compact flux density of � 1 Jy and the angular size of � 40 µas � 5.5 Rs, which is broadly consistent with the peak brightness of the radio cores at 1-86 GHz located within � 10 2 Rs. Our observations occurred in the middle of an enhancement in very-high-energy (VHE) -ray flux, presumably originating in the vicinity of the central black hole. Our measurements, combined with results of multi-wavelength observations, favor a scenario in which the VHE region has an extended size of �20-60 Rs. Subject headings: galaxies: active —galaxies: individual (M87) —galaxies: jets —radio continuum: galaxies —techniques: high angular resolution —techniques: interferometric

[1]  A. Marconi,et al.  The Supermassive Black Hole of M87 and the Kinematics of Its Associated Gaseous Disk , 1997 .

[2]  Eric Agol,et al.  The size of the jet launching region in M87 , 2011, 1109.6011.

[3]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[4]  K. Asada,et al.  THE PARABOLIC JET STRUCTURE IN M87 AS A MAGNETOHYDRODYNAMIC NOZZLE , 2013, 1308.1436.

[5]  R. Mahadevan,et al.  Scaling Laws for Advection-dominated Flows: Applications to Low-Luminosity Galactic Nuclei , 1996, astro-ph/9609107.

[6]  M. C. Medina,et al.  A lepto-hadronic model for high-energy emission from FR I radiogalaxies , 2010, 1005.3025.

[7]  M. Kino,et al.  ALMA Continuum Spectrum of the M87 Nucleus - Quasi-simultaneous continuum observations at bands-3, 6, 7, and 9 , 2013 .

[8]  F. Massaro,et al.  FERMI LARGE AREA TELESCOPE GAMMA-RAY DETECTION OF THE RADIO GALAXY M87 , 2009, 0910.3565.

[9]  M. Beilicke VERITAS observations of M87 in 2011/2012 , 2012 .

[10]  R. Narayan,et al.  Advection-dominated Accretion: Self-Similarity and Bipolar Outflows , 1994, astro-ph/9411058.

[11]  General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[12]  M. Wright,et al.  FINE-SCALE STRUCTURE OF THE QUASAR 3C 279 MEASURED WITH 1.3 mm VERY LONG BASELINE INTERFEROMETRY , 2013, 1305.3359.

[13]  Canadian Institute for Theoretical Astrophysics,et al.  DETECTING FLARING STRUCTURES IN SAGITTARIUS A* WITH HIGH-FREQUENCY VLBI , 2008, 0809.3424.

[14]  J. A. Zensus,et al.  “RadioAstron”-A telescope with a size of 300 000 km: Main parameters and first observational results , 2013, 1303.5013.

[15]  A. Loeb,et al.  IMAGING THE BLACK HOLE SILHOUETTE OF M87: IMPLICATIONS FOR JET FORMATION AND BLACK HOLE SPIN , 2008, 0812.0366.

[16]  V. Golev,et al.  Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy , 2011 .

[17]  M. Wright,et al.  1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES , 2010, 1011.2472.

[18]  P. Koch,et al.  MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY , 2014, 1402.5238.

[19]  Alina-Catalina Donea,et al.  M87 as a misaligned synchrotron-proton blazar , 2004 .

[20]  Frank Rieger,et al.  VARIABLE TeV EMISSION AS A MANIFESTATION OF JET FORMATION IN M87? , 2010, 1011.5319.

[21]  F. Rieger Non-thermal Processes in Black-Hole-Jet Magnetospheres , 2011, 1107.2119.

[22]  Kazunori Akiyama,et al.  Super-resolution imaging with radio interferometry using sparse modeling , 2014, 1407.2422.

[23]  Kenneth I. Kellermann,et al.  The Spectra of Opaque Radio Sources , 1969 .

[24]  Cambridge,et al.  The 'Quiescent' black hole in M87 , 1996 .

[25]  Tiziana Di Matteo,et al.  Accretion onto the Supermassive Black Hole in M87 , 2002, astro-ph/0202238.

[26]  G. Ghisellini,et al.  Spine–sheath layer radiative interplay in subparsec‐scale jets and the TeV emission from M87 , 2008, 0801.0593.

[27]  Alan E. E. Rogers,et al.  Fringe Detection Methods for Very Long Baseline Arrays , 1995 .

[28]  M. Kino,et al.  Energetics of TeV Blazars and Physical Constraints on Their Emission Regions , 2001, astro-ph/0107436.

[29]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[30]  Noriyuki Kawaguchi,et al.  An origin of the radio jet in M87 at the location of the central black hole , 2011, Nature.

[31]  C. P. Stern,et al.  The radio to X-ray spectrum of the M87 jet and nucleus , 1991 .

[32]  Martin J. Rees,et al.  Theory of extragalactic radio sources , 1984 .

[33]  P. M. Koch,et al.  Greenland telescope project: Direct confirmation of black hole with sub‐millimeter VLBI , 2014, 1407.2450.

[34]  RESOLVING THE INNER JET STRUCTURE OF 1924-292 WITH THE EVENT HORIZON TELESCOPE , 2012, 1208.4402.

[35]  T. Manmoto Advection-dominated Accretion Flow around a Kerr Black Hole , 2000 .

[36]  Jaap W. M. Baars,et al.  The Submillimeter Telescope (SMT) project. , 1988 .

[37]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[38]  Mareki Honma,et al.  High-Angular-Resolution and High-Sensitivity Science Enabled by Beamformed ALMA , 2013, 1309.3519.

[39]  F. Aharonian,et al.  INTERPRETATION OF THE FLARES OF M87 AT TeV ENERGIES IN THE CLOUD–JET INTERACTION SCENARIO , 2012, 1202.5907.

[40]  S. Kaufmann,et al.  THE 2010 VERY HIGH ENERGY γ-RAY FLARE AND 10 YEARS OF MULTI-WAVELENGTH OBSERVATIONS OF M 87 , 2011, 1111.5341.

[41]  Stanford,et al.  Hot Self-Similar Relativistic Magnetohydrodynamic Flows , 2008, 0801.1120.

[42]  Eric W. Peng,et al.  THE ACS FORNAX CLUSTER SURVEY. V. MEASUREMENT AND RECALIBRATION OF SURFACE BRIGHTNESS FLUCTUATIONS AND A PRECISE VALUE OF THE FORNAX–VIRGO RELATIVE DISTANCE , 2009, 0901.1138.

[43]  P. Ho,et al.  The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.

[44]  Harvard,et al.  EVIDENCE FOR LOW BLACK HOLE SPIN AND PHYSICALLY MOTIVATED ACCRETION MODELS FROM MILLIMETER-VLBI OBSERVATIONS OF SAGITTARIUS A* , 2010, 1011.2770.

[45]  H. Nagakura,et al.  DIRECT TIME RADIO VARIABILITY INDUCED BY NON-AXISYMMETRIC STANDING ACCRETION SHOCK INSTABILITY: IMPLICATIONS FOR M87 , 2010, 1001.2014.

[46]  Mareki Honma,et al.  THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO ∼10 SCHWARZSCHILD RADII , 2013, 1308.1411.

[47]  P. Raffin,et al.  Greenland Telescope (GLT) Project: "A Direct Confirmation of Black Hole with Submillimeter VLBI" , 2013, 1310.1665.

[48]  S. Sahu,et al.  Hadronic origin of the TeV flare of M87 in April 2010 , 2013, 1310.1381.

[49]  D. P. Woody,et al.  Structure of Sagittarius A* at 86 GHz using VLBI Closure Quantities , 2001 .

[50]  K. Tsinganos,et al.  SYNTHETIC SYNCHROTRON EMISSION MAPS FROM MHD MODELS FOR THE JET OF M87 , 2009, 0901.2634.

[51]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[52]  A. Konigl Relativistic jets as X-ray and gamma-ray sources. , 1981 .

[53]  University of California,et al.  THE M87 BLACK HOLE MASS FROM GAS-DYNAMICAL MODELS OF SPACE TELESCOPE IMAGING SPECTROGRAPH OBSERVATIONS , 2013, 1304.7273.

[54]  J. Mangum,et al.  Imaging at Radio through Submillimeter Wavelengths , 1999 .

[55]  M. Kino,et al.  RELATIVISTIC ELECTRONS AND MAGNETIC FIELDS OF THE M87 JET ON THE ∼10 SCHWARZSCHILD RADII SCALE , 2014, 1403.0650.

[56]  Dmitri A. Uzdensky,et al.  Fast TeV variability from misaligned minijets in the jet of M87 , 2009, 0907.5005.

[57]  Canada.,et al.  IMAGING THE SUPERMASSIVE BLACK HOLE SHADOW AND JET BASE OF M87 WITH THE EVENT HORIZON TELESCOPE , 2014, 1404.7095.

[58]  H. Kobayashi,et al.  Multi-Epoch VERA Observations of Sagittarius A*. I. Images and Structural Variability , 2013, 1308.6657.

[59]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[60]  A. R. Bazer-Bachi,et al.  Radio Imaging of the Very-High-Energy γ-Ray Emission Region in the Central Engine of a Radio Galaxy , 2009, Science.

[61]  Masanori Nakamura,et al.  THE STRUCTURE OF THE M87 JET: A TRANSITION FROM PARABOLIC TO CONICAL STREAMLINES , 2011, 1110.1793.

[62]  P. K. Leung,et al.  RADIATIVE MODELS OF SGR A* FROM GRMHD SIMULATIONS , 2009, 0909.5431.

[63]  S. Vincent Very-High Energy Processes in Black Hole Magnetosphere: the Case of M87 , 2014 .

[64]  Reinhard Schlickeiser,et al.  INTERNAL γγ OPACITY IN ACTIVE GALACTIC NUCLEI AND THE CONSEQUENCES FOR THE TeV OBSERVATIONS OF M87 AND Cen A , 2011, 1103.5552.

[65]  PARTICLE ACCELERATION CLOSE TO THE SUPERMASSIVE BLACK HOLE HORIZON: THE CASE OF M87 , 2008, 0805.4075.

[66]  M. Reid,et al.  Subluminal Motion and Limb Brightening in the Nuclear Jet of M87 , 1989 .

[67]  W. Sparks,et al.  HST and Merlin Observations of 3C 264—A Laboratory for Jet Physics and Unified Schemes , 1997 .

[68]  M. Kino,et al.  MAGNETIZATION DEGREE AT THE JET BASE OF M87 DERIVED FROM THE EVENT HORIZON TELESCOPE DATA: TESTING THE MAGNETICALLY DRIVEN JET PARADIGM , 2015, 1502.03900.

[69]  Yan-Rong Li,et al.  A GENERAL RELATIVISTIC EXTERNAL COMPTON-SCATTERING MODEL FOR TeV EMISSION FROM M87 , 2011, 1112.2948.

[70]  Eric S. Perlman,et al.  Is the core of m87 the source of its TeV emission? implications for unified schemes , 2005 .

[71]  M. Kino,et al.  VLBI OBSERVATIONS OF THE JET IN M 87 DURING THE VERY HIGH ENERGY γ-RAY FLARE IN 2010 APRIL , 2012, 1210.4942.

[72]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[73]  P. Chris Fragile,et al.  THE SUBMILLIMETER BUMP IN Sgr A* FROM RELATIVISTIC MHD SIMULATIONS , 2010, 1005.4062.

[74]  R. Antonucci,et al.  THERMAL EMISSION AS A TEST FOR HIDDEN NUCLEI IN NEARBY RADIO GALAXIES , 2002, astro-ph/0207385.

[75]  K. Hirotani Kinetic Luminosity and Composition of Active Galactic Nuclei Jets , 2004, astro-ph/0411087.

[76]  H. Hirabayashi,et al.  Milliarcsecond-Scale Spectral Properties and Jet Motions in M 87 , 2005, astro-ph/0511383.

[77]  CONSTRAINING THE SIZE OF THE DARK REGION AROUND THE M87 BLACK HOLE BY SPACE-VLBI OBSERVATIONS , 2011, 1102.3583.

[78]  M. Lister,et al.  The Inner Jet of the Radio Galaxy M87 , 2007, 0708.2695.

[79]  William Junor,et al.  High-Frequency VLBI Imaging of the Jet Base of M87 , 2007 .

[80]  A. Marscher Accurate formula for the self-Compton X-ray flux density from a uniform, spherical, compact radio source. , 1983 .

[81]  Felix Aharonian,et al.  Production of TeV Gamma Radiation in the Vicinity of the Supermassive Black Hole in the Giant Radio Galaxy M87 , 2007, 0704.3282.

[82]  Anthony C. S. Readhead,et al.  Equipartition brightness temperature and the inverse Compton catastrophe , 1994 .

[83]  The Galactic Center Weather Forecast , 2012, 1204.1371.

[84]  Ramesh Narayan,et al.  Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.

[85]  Masanori Nakamura,et al.  DISCOVERY OF SUB- TO SUPERLUMINAL MOTIONS IN THE M87 JET: AN IMPLICATION OF ACCELERATION FROM SUB-RELATIVISTIC TO RELATIVISTIC SPEEDS , 2013, 1311.5709.

[86]  Jonathan E. Grindlay,et al.  Advection-dominated Accretion Model of Sagittarius A*: Evidence for a Black Hole at the Galactic Center , 1997, astro-ph/9706112.

[87]  S. Mineshige,et al.  Spectrum of Optically Thin Advection-dominated Accretion Flow around a Black Hole: Application to Sagittarius A* , 1997, astro-ph/9708234.

[88]  Felix A. Aharonian,et al.  GAMMA-RAY FLARES FROM RED GIANT/JET INTERACTIONS IN ACTIVE GALACTIC NUCLEI , 2010, 1005.5252.

[89]  M. Kino,et al.  A STRONG RADIO BRIGHTENING AT THE JET BASE OF M 87 DURING THE ELEVATED VERY HIGH ENERGY GAMMA-RAY STATE IN 2012 , 2014, 1405.1082.