A study on finite element analysis methodologies and approaches used for total hip arthroplasty

[1]  A. Sedmak,et al.  Numerical analysis of fatigue crack growth of hip implant , 2019, Engineering Fracture Mechanics.

[2]  L. Lidgren,et al.  Fracture strength of the proximal femur injected with a calcium sulfate/hydroxyapatite bone substitute , 2019, Clinical biomechanics.

[3]  F. Kolisek,et al.  CHAPTER 31 – Indications for Revision Total Hip Arthroplasty , 2009 .

[4]  Yue-ju Liu,et al.  Femoral Stress and Strain Changes post‐Hip, ‐Knee and ‐Ipsilateral Hip/Knee Arthroplasties: a Finite Element Analysis , 2014, Orthopaedic surgery.

[5]  Katarina Čolić,et al.  Finite Element Modeling of Hip Implant Static Loading , 2016 .

[6]  A. A. Oshkour,et al.  Finite element analysis of circumferential crack behavior in cement–femoral prosthesis interface , 2013 .

[7]  F. Tarlochan,et al.  Finite element study of functionally graded porous femoral stems incorporating body-centered cubic structure. , 2019, Artificial organs.

[8]  S. Affatato The history of total hip arthroplasty (THA) , 2014 .

[9]  M. Uddin,et al.  Reducing stress concentration on the cup rim of hip implants under edge loading , 2018, International journal for numerical methods in biomedical engineering.

[10]  S. Sundaram,et al.  Finite element analysis and modeling of fractured femur bone , 2020 .

[11]  H. Fouad In vitro evaluation of stiffness graded artificial hip joint femur head in terms of joint stresses distributions and dimensions: finite element study , 2011, Journal of materials science. Materials in medicine.

[12]  Antonio Gloria,et al.  Composite materials for hip joint prostheses , 2010 .

[13]  A. S. Sidhu Surface texturing of non-toxic, biocompatible titanium alloys via electro-discharge , 2021, Reports in Mechanical Engineering.

[14]  Andy H. Choi,et al.  Stress induced at the bone-particle-reinforced nanocomposite interface , 2020 .

[15]  J. Geringer,et al.  Computational modeling of hip implants , 2014 .

[16]  Ashutosh Kumar Singh,et al.  Wear Simulation of Artificial Hip Joints: Effect of Materials , 2019, Materials Today: Proceedings.

[17]  R. Daud,et al.  Stress analysis prediction on screw orthopedic implant in trabecular bone , 2019, Materials Today: Proceedings.

[18]  Xin Zhao,et al.  Explicit finite element modelling of artificial hip and knee joints , 2021 .

[19]  K. Smet,et al.  Comparing hip resurfacing arthroplasty (HRA) and total hip arthroplasty (THA) , 2013 .

[20]  Tarun Goswami,et al.  Hip implants VII: Finite element analysis and optimization of cross-sections , 2008 .

[21]  A. Sedmak,et al.  Design Aspects of Hip Implant Made of Ti-6Al-4V Extra Low Interstitials Alloy , 2020 .

[22]  D. Tzetzis,et al.  Finite Element Analysis of Orthopedic Hip Implant with Functionally Graded Bioinspired Lattice Structures , 2020, Biomimetics.

[23]  S. Chattopadhyaya,et al.  Designing and analysis of the femoral neck for an artificial hip joint prosthesis , 2019, Mechanical Behaviour of Biomaterials.

[24]  Manish Bhargava,et al.  Finite Element Analysis of Human Fractured Femur Bone Implantation with PMMA Thermoplastic Prosthetic Plate , 2017 .

[25]  D. Munteanu,et al.  Additively manufactured femoral stem topology optimization: case study , 2019, Materials Today: Proceedings.

[26]  Saverio Affatato,et al.  Historical techniques and designs in total hip arthroplasty (THA) , 2014 .

[27]  L. Costa,et al.  Correlation between in vivo stresses and oxidation of UHMWPE in total hip arthroplasty , 2014, Journal of Materials Science: Materials in Medicine.

[28]  Xuan Zhang,et al.  Computational modelling of biomechanics for an artificial hip joint , 2021 .

[29]  W. Hozack,et al.  CHAPTER 33 – Revision Total Hip Arthroplasty: Preoperative Planning , 2006 .

[30]  L. Nifong,et al.  Robotic mitral surgery at East Carolina University: a 6 year experience , 2006, The international journal of medical robotics + computer assisted surgery : MRCAS.

[31]  F. Tarlochan,et al.  A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem , 2020, Journal of Materials Science: Materials in Medicine.

[32]  K. Kawanabe,et al.  Load dispersion effects of acetabular reinforcement devices used in revision total hip arthroplasty: a simulation study using finite element analysis. , 2011, The Journal of arthroplasty.

[33]  Ž. Božić,et al.  Finite element modelling and fatigue life assessment of a cemented total hip prosthesis based on 3D scanning , 2020 .

[34]  P. Tandon,et al.  Heterogeneous modeling based prosthesis design with porosity and material variation. , 2018, Journal of the mechanical behavior of biomedical materials.

[35]  G. Wallace,et al.  In vivo biocompatibility of porous and non-porous polypyrrole based trilayered actuators , 2017, Journal of Materials Science: Materials in Medicine.

[36]  N Verdonschot,et al.  Numerical analysis of an osseointegrated prosthesis fixation with reduced bone failure risk and periprosthetic bone loss. , 2012, Journal of biomechanics.

[37]  S. M. Davachi,et al.  Optimization simulated injection molding process for ultrahigh molecular weight polyethylene nanocomposite hip liner using response surface methodology and simulation of mechanical behavior. , 2018, Journal of the mechanical behavior of biomedical materials.

[38]  S. Cowin,et al.  Topological optimization in hip prosthesis design , 2010, Biomechanics and modeling in mechanobiology.

[39]  R. Bader,et al.  Stress and strain distribution in femoral heads for hip resurfacing arthroplasty with different materials: A finite element analysis. , 2020, Journal of the mechanical behavior of biomedical materials.

[40]  A. H. Montazeran,et al.  A porous polymeric–hydroxyapatite scaffold used for femur fractures treatment: fabrication, analysis, and simulation , 2020, European Journal of Orthopaedic Surgery & Traumatology.

[41]  Improving the Finite Element Simulation of Wear of Total Hip Prosthesis’ Spherical Joint with the Polymeric Component , 2015 .

[42]  S. Tavares,et al.  Failure Analysis of a Titanium Hip Prosthesis , 2020, Journal of Failure Analysis and Prevention.

[43]  F Tarlochan,et al.  Design of new generation femoral prostheses using functionally graded materials: A finite element analysis , 2013, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[44]  S. Yerby,et al.  Effects on hip stress following sacroiliac joint fixation: A finite element study , 2019, JOR spine.

[45]  Liangchi Zhang,et al.  Predicting the wear of hard-on-hard hip joint prostheses , 2013 .

[46]  Kadir Gok,et al.  Comparison of effects of different screw materials in the triangle fixation of femoral neck fractures , 2017, Journal of Materials Science: Materials in Medicine.

[47]  M. Haneef,et al.  Fatigue Life Estimation of Artificial Hip Joint Model Using Finite Element Method , 2015 .

[48]  Wen Zhang,et al.  Improved mechanical long-term reliability of hip resurfacing prostheses by using silicon nitride , 2010, Journal of materials science. Materials in medicine.

[49]  M. Tarala,et al.  The effect of bone ingrowth depth on the tensile and shear strength of the implant–bone e-beam produced interface , 2011, Journal of materials science. Materials in medicine.

[50]  Jesica Anguiano-Sanchez,et al.  Influence of PEEK Coating on Hip Implant Stress Shielding: A Finite Element Analysis , 2016, Comput. Math. Methods Medicine.

[51]  Jung Min Sohn,et al.  Finite Element Analysis of Different Artificial Hip Stem Designs Based on Fenestration under Static Loading , 2020 .

[52]  S. Affatato,et al.  Materials for Hip Prostheses: A Review of Wear and Loading Considerations , 2019, Materials.

[53]  H. Nazha,et al.  Effect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis , 2020 .

[54]  Stress Analysis of Bioceramic Coated Orthopaedic Implants , 2018 .