Fischer-Tropsch synthesis in a microchannel reactor using mesoporous silica supported bimetallic Co-Ni catalyst: Process optimization and kinetic modeling

Abstract Fischer-Tropsch (FT) synthesis was carried out in a microchannel reactor under a wide range of operating conditions ( e.g. 280–320 °C, 10–50 bar, H 2 /CO 1–3) using a mesoporous supported bimetallic Co-Ni catalyst. The response surface methodology (RSM) and central composite design (CCD) were employed in determining the optimal condition for light olefin production. Three key operational parameters ( e.g. syngas ratio, operational pressure, and reaction temperature) were chosen as independent variables in CCD. A new comprehensive kinetic model assuming separate rate of C 1 , C 2 , C 3 and C n ( n  ≥ 4) by coupling Langmuir-Hinshelwood-Hougen-Watson (LHHW) carbide mechanistic approach together with thermodynamic correction is capable of representing olefin-to-paraffin ratio (O/P ratio) and product distribution at experimental conditions in this microchannel reactor.

[1]  Valérie Sage,et al.  Chain length dependent olefin re-adsorption model for Fischer–Tropsch synthesis over Co-Al2O3 catalyst , 2014 .

[2]  D. Mears,et al.  Tests for Transport Limitations in Experimental Catalytic Reactors , 1971 .

[3]  A. Mirzaei,et al.  Modeling and operating conditions optimization of Fischer–Tropsch synthesis in a fixed-bed reactor , 2012 .

[4]  A. Mirzaei,et al.  Kinetics modeling of Fischer–Tropsch synthesis on the unsupported Fe-Co-Ni (ternary) catalyst prepared using co-precipitation procedure , 2015 .

[5]  Weiyong Ying,et al.  The comprehensive kinetics of Fischer–Tropsch synthesis over a Co/AC catalyst on the basis of CO insertion mechanism , 2013 .

[6]  Yong Sun,et al.  Production of activated carbon by H3PO4 activation treatment of corncob and its performance in removing nitrobenzene from water , 2007 .

[7]  L. Zuohu,et al.  [Analysis of trace elements in corncob by microwave digestion-ICP-AES]. , 2007 .

[8]  Tomohisa Miyazawa,et al.  Fischer–Tropsch synthesis over alumina supported bimetallic Co–Ni catalyst: Effect of impregnation sequence and solution , 2015 .

[9]  Yong Sun,et al.  Optimization using response surface methodology and kinetic study of Fischer–Tropsch synthesis using SiO2 supported bimetallic Co–Ni catalyst , 2016 .

[10]  Manos Mavrikakis,et al.  CO activation pathways and the mechanism of Fischer–Tropsch synthesis , 2010 .

[11]  A. Mirzaei,et al.  Development of a kinetic model for Fischer–Tropsch synthesis over Co/Ni/Al2O3 catalyst , 2012 .

[12]  Tiejun Wang,et al.  Impact of H2/CO ratios on phase and performance of Mn-modified Fe-based Fischer Tropsch synthesis catalyst , 2013 .

[13]  Amir Mosayebi,et al.  The development of new comprehensive kinetic modeling for Fischer–Tropsch synthesis process over Co-Ru/γ-Al2O3 nano-catalyst in a fixed-bed reactor , 2016 .

[14]  Raymond C. Everson,et al.  Fischer−Tropsch Kinetic Studies with Cobalt−Manganese Oxide Catalysts , 2000 .

[15]  Heather M. Job,et al.  Direct syngas hydrogenation over a Co–Ni bimetallic catalyst: Process parameter optimization , 2015 .

[16]  Yong Sun,et al.  Study on the Spectra of Spruce Lignin with Chlorine Dioxide Oxidation , 2007 .

[17]  H. Schulz Principles of Fischer–Tropsch synthesis—Constraints on essential reactions ruling FT-selectivity , 2013 .

[18]  A. Frennet,et al.  Kinetics of reactions catalyzed by metals: role of surface hydrocarbon residues in conversion of alkanes on Pt , 1990 .

[19]  Chaohe Xu,et al.  Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors. , 2012, Nanoscale.

[20]  P. Nikparsaa,et al.  Effect of reaction conditions and Kinetic study on the Fischer-Tropsch synthesis over fused Co-Ni/Al2O3 catalyst , 2014 .

[21]  G. Froment,et al.  Kinetic Model of Fischer–Tropsch Synthesis in a Slurry Reactor on Co–Re/Al2O3 Catalyst , 2013 .

[22]  Hossein Atashi,et al.  Kinetic study of Fischer–Tropsch process on titania-supported cobalt–manganese catalyst , 2010 .

[23]  D. Glasser,et al.  Distribution between C2 and C3 in low temperature Fischer–Tropsch synthesis over a TiO2-supported cobalt catalyst , 2015 .

[24]  J. Fierro,et al.  Fischer–Tropsch synthesis on mono- and bimetallic Co and Fe catalysts in fixed-bed and slurry reactors , 2007 .

[25]  Douglas M. Ruthven,et al.  Principles of Adsorption and Adsorption Processes , 1984 .

[26]  Lian Zhang,et al.  ACID HYDROLYSIS OF CORN STOVER USING HYDROCHLORIC ACID: KINETIC MODELING AND STATISTICAL OPTIMIZATION , 2014 .

[27]  J. Fierro,et al.  Metal–support interactions and reactivity of Co/CeO2 catalysts in the Fischer–Tropsch synthesis reaction , 2005 .

[28]  W. Shafer,et al.  Fischer–Tropsch synthesis: Activity of metallic phases of cobalt supported on silica , 2013 .

[29]  W. Ying,et al.  Product distributions and olefin-to-paraffin ratio over an iron-based catalyst for Fischer–Tropsch synthesis , 2014, Reaction Kinetics, Mechanisms and Catalysis.

[30]  S. Balamurugan,et al.  Structural evaluation and nonlinear optical properties of Ni/NiO, Ni/NiCo2O4 and Co/Co3O4 nanocomposites , 2013 .

[31]  Sayed Javid Royaee,et al.  Application of nano-sized cobalt on ZSM-5 zeolite as an active catalyst in Fischer–Tropsch synthesis , 2012 .

[32]  A. Eshraghi,et al.  Kinetics of the Fischer–Tropsch reaction in fixed-bed reactor over a nano-structured Fe–Co–Ce catalyst supported with SiO2 , 2015 .

[33]  B. Yue,et al.  Highly Dispersed Nickel-Containing Mesoporous Silica with Superior Stability in Carbon Dioxide Reforming of Methane: The Effect of Anchoring , 2014, Materials.

[34]  A. Mirzaei,et al.  An investigation of the kinetics and mechanism of Fischer–Tropsch synthesis on Fe–Co–Mn supported catalyst , 2012 .

[35]  Wei Chu,et al.  Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas , 2012 .

[36]  Lian Zhang,et al.  Preparation of steam activated carbon from black liquor by flue gas precipitation and its performance in hydrogen sulfide removal: Experimental and simulation works , 2016 .

[37]  A. Avci,et al.  Intensified catalytic reactors for Fischer-Tropsch synthesis and for reforming of renewable fuels to hydrogen and synthesis gas , 2016 .

[38]  A. Dalai,et al.  Deactivation behavior of ruthenium promoted Co/γ-Al2O3 catalysts in Fischer–Tropsch synthesis , 2008 .

[39]  Ying Liu,et al.  Detailed Kinetics of Fischer−Tropsch Synthesis on an Industrial Fe−Mn Catalyst , 2003 .

[40]  N. Kruse,et al.  Hydrocarbon chain lengthening in catalytic CO hydrogenation: evidence for a CO-insertion mechanism. , 2012, Journal of the American Chemical Society.

[41]  S. Piche,et al.  Deactivation of a Co/Al2O3 Fischer–Tropsch catalyst by water-induced sintering in slurry reactor: Modeling and experimental investigations , 2013 .

[42]  Modeling a slurry CSTR with Co/PAl 2O 3 catalyst for FischerTropsch synthesis , 2011 .

[43]  Burtron H. Davis,et al.  Fischer–Tropsch Synthesis: Reaction mechanisms for iron catalysts , 2009 .

[44]  Jun Han,et al.  Fischer–Tropsch synthesis of liquid hydrocarbons over mesoporous SBA-15 supported cobalt catalysts , 2015 .

[45]  Li Zhang,et al.  An experimental study on a microchannel reactor for Fischer Tropsch synthesis , 2014 .

[46]  G. Froment,et al.  Advanced fundamental modeling of the kinetics of Fischer–Tropsch synthesis , 2016 .

[47]  A. M. Saib,et al.  Providing fundamental and applied insights into Fischer-Tropsch catalysis : Sasol-Eindhoven University of Technology collaboration , 2016 .

[48]  Yao Yao,et al.  Silica-encapsulated bimetallic Co–Ni nanoparticles as novel catalysts for partial oxidation of methane to syngas , 2012 .

[49]  G. Marin,et al.  Physisorption and chemisorption of alkanes and alkenes in H-FAU: a combined ab initio-statistical thermodynamics study. , 2009, Physical chemistry chemical physics : PCCP.

[50]  F. G. Botes,et al.  Proposal of a new product characterization model for the iron-based low-temperature Fischer-Tropsch synthesis , 2007 .

[51]  Bin Yang,et al.  Improved Fischer-Tropsch Economics Enabled by Microchannel Technology , 2011 .

[52]  C. H. Bartholomew,et al.  Kinetics of deactivation by carbon of a cobalt Fischer–Tropsch catalyst: Effects of CO and H2 partial pressures , 2015 .

[53]  Yong Sun,et al.  Preparation of activated carbon from furfural production waste and its application for water pollutants removal and gas separation , 2012 .

[54]  Gilbert F. Froment,et al.  Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 2. Kinetic modeling , 1993 .

[55]  Hsiu-Wei Chen,et al.  Carbon dioxide reforming of methane reaction catalyzed by stable nickel copper catalysts , 2004 .

[56]  G. V. D. Laan Kinetics, selectivity and scale up of the Fischer-Tropsch synthesis , 1999 .

[57]  Stuart H. Taylor,et al.  Fischer Tropsch synthesis using cobalt based carbon catalysts , 2016 .

[58]  Jason Street,et al.  Fischer–Tropsch synthesis of olefin-rich liquid hydrocarbons from biomass-derived syngas over carbon-encapsulated iron carbide/iron nanoparticles catalyst , 2017 .

[59]  Mehdi Shiva,et al.  Study of syngas conversion to light olefins by statistical models , 2014 .