One-dimensional hole gas in germanium/silicon nanowire heterostructures.

Two-dimensional electron and hole gas systems, enabled through band structure design and epitaxial growth on planar substrates, have served as key platforms for fundamental condensed matter research and high-performance devices. The analogous development of one-dimensional (1D) electron or hole gas systems through controlled growth on 1D nanostructure substrates, which could open up opportunities beyond existing carbon nanotube and nanowire systems, has not been realized. Here, we report the synthesis and transport studies of a 1D hole gas system based on a free-standing germanium/silicon (Ge/Si) core/shell nanowire heterostructure. Room temperature electrical transport measurements clearly show hole accumulation in undoped Ge/Si nanowire heterostructures, in contrast to control experiments on single-component nanowires. Low-temperature studies show well-controlled Coulomb blockade oscillations when the Si shell serves as a tunnel barrier to the hole gas in the Ge channel. Transparent contacts to the hole gas also have been reproducibly achieved by thermal annealing. In such devices, we observe conductance quantization at low temperatures, corresponding to ballistic transport through 1D subbands, where the measured subband energy spacings agree with calculations for a cylindrical confinement potential. In addition, we observe a "0.7 structure," which has been attributed to spontaneous spin polarization, suggesting the universality of this phenomenon in interacting 1D systems. Lastly, the conductance exhibits little temperature dependence, consistent with our calculation of reduced backscattering in this 1D system, and suggests that transport is ballistic even at room temperature.

[1]  K. Suzuki,et al.  Quantum resonances in the valence bands of germanium. II. Cyclotron resonances in uniaxially stressed crystals , 1974 .

[2]  F. Simmel,et al.  Quantum interference in a one-dimensional silicon nanowire , 2003 .

[3]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[4]  N. Wingreen,et al.  Low-temperature fate of the 0.7 structure in a point contact: a Kondo-like correlated state in an open system. , 2002, Physical review letters.

[5]  Yi Cui,et al.  Controlled Growth and Structures of Molecular-Scale Silicon Nanowires , 2004 .

[6]  Friedrich Schäffler,et al.  High-mobility Si and Ge structures , 1997 .

[7]  A. Forchel,et al.  Bias and temperature dependence of the 0.7 conductance anomaly in quantum point contacts , 2000, cond-mat/0005082.

[8]  Single-electron tunneling in InP nanowires , 2003, cond-mat/0302517.

[9]  Martin,et al.  Theoretical calculations of heterojunction discontinuities in the Si/Ge system. , 1986, Physical review. B, Condensed matter.

[10]  J. Hafner,et al.  Fabry - Perot interference in a nanotube electron waveguide , 2001, Nature.

[11]  Simmons,et al.  Possible Spin Polarization in a One-Dimensional Electron Gas. , 1996, Physical review letters.

[12]  Marc Kastner,et al.  Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures , 1993 .

[13]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[14]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[15]  Anomalous conductance quantization in carbon nanotubes. , 2004, Physical review letters.

[16]  Leon Balents,et al.  Luttinger-liquid behaviour in carbon nanotubes , 1998, Nature.

[17]  R. Blick,et al.  Single-electron tunneling in highly doped silicon nanowires in a dual-gate configuration , 2001 .

[18]  L. Sohn,et al.  Mesoscopic electron transport , 1997 .

[19]  Charles M Lieber,et al.  Coherent single charge transport in molecular-scale silicon nanowires. , 2005, Nano letters.

[20]  Williamson,et al.  Quantized conductance of point contacts in a two-dimensional electron gas. , 1988, Physical review letters.

[21]  D J Reilly,et al.  Density-dependent spin polarization in ultra-low-disorder quantum wires. , 2002, Physical review letters.

[22]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[23]  West,et al.  Nonuniversal Conductance Quantization in Quantum Wires. , 1996, Physical review letters.

[24]  Steven G. Louie,et al.  Disorder, Pseudospins, and Backscattering in Carbon Nanotubes , 1999 .

[25]  Hiroyuki Sakaki,et al.  Scattering Suppression and High-Mobility Effect of Size-Quantized Electrons in Ultrafine Semiconductor Wire Structures , 1980 .

[26]  P. McEuen,et al.  Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.

[27]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[28]  D. Turnbull,et al.  Solid State Physics : Advances in Research and Applications , 1978 .

[29]  Tsuneya Ando,et al.  Impurity Scattering in Carbon Nanotubes Absence of Back Scattering , 1998 .

[30]  E. Fitzgerald,et al.  Very high mobility two‐dimensional hole gas in Si/GexSi1−x/Ge structures grown by molecular beam epitaxy , 1993 .

[31]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .