Self-stabilizing photonic levitation and propulsion of nanostructured macroscopic objects

Light is a powerful tool to manipulate matter, but existing approaches often necessitate focused, high-intensity light that limits the manipulated object’s shape, material and size. Here, we report that self-stabilizing optical manipulation of macroscopic—millimetre-, centimetre- and even metre-scale—objects could be achieved by controlling the anisotropy of light scattering along the object’s surface. In a scalable design that features silicon resonators on silica substrate, we identify nanophotonic structures that can self-stabilize when rotated and/or translated relative to the optical axis. Nanoscale control of scattering across a large area creates restoring behaviour by engineering the scattered phase, without needing to focus incident light or excessively constrain the shape, size or material composition of the object. Our findings may lead to platforms for manipulating macroscopic objects, with applications ranging from contactless wafer-scale fabrication and assembly, to trajectory control for ultra-light spacecraft and even laser-propelled light sails for space exploration.Mechanical stability of macroscopic structures on the millimetre-, centimetre- and even metre-scale could be realized by tailoring the anisotropy of light scattering along the object’s surface, without needing to focus incident light or excessively constrain the shape, size or material composition of the object.

[1]  H. Atwater,et al.  Nanophotonic Heterostructures for Efficient Propulsion and Radiative Cooling of Relativistic Light Sails. , 2018, Nano letters.

[2]  David G. Grier,et al.  Optical tweezers in colloid and interface science , 1997 .

[3]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[4]  W. Bowen,et al.  Enhanced optical trapping via structured scattering , 2015, 2105.09539.

[5]  Andrei Faraon,et al.  Planar metasurface retroreflector , 2017, Nature Photonics.

[6]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[7]  J. L. Redding Interstellar Vehicle propelled by Terrestrial Laser Beam , 1967, Nature.

[8]  Marin Soljacic,et al.  Exploiting Optical Asymmetry for Controlled Guiding of Particles with Light , 2016 .

[9]  Alan D. Raisanen,et al.  Stable optical lift , 2010 .

[10]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[11]  Kan Yao,et al.  Generalized laws of reflection and refraction from transformation optics , 2012, 1202.5829.

[12]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.

[13]  Zachary Manchester,et al.  Stability of a Light Sail Riding on a Laser Beam , 2016, 1609.09506.

[14]  Eva von Haartman,et al.  Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond , 2015, Nature Photonics.

[15]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[16]  Robert L. Forward,et al.  Roundtrip Interstellar Travel Using Laser-Pushed Lightsails , 1984 .

[17]  Qiang Li,et al.  Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force. , 2017, Physical review letters.

[18]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[19]  Deep Jariwala,et al.  Materials challenges for the Starshot lightsail , 2018, Nature Materials.

[20]  A. N. Vamivakas,et al.  Levitated optomechanics: introduction , 2017 .

[21]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[22]  L. Novotný,et al.  Optically levitated nanoparticle as a model system for stochastic bistable dynamics , 2017, Nature Communications.

[23]  Andrei Faraon,et al.  A review of dielectric optical metasurfaces for wavefront control , 2018, Nanophotonics.

[24]  P. Lubin,et al.  Relativistic Spacecraft Propelled by Directed Energy , 2017, 1710.10732.

[25]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[26]  Vladlen G. Shvedov,et al.  A long-range polarization-controlled optical tractor beam , 2014, Nature Photonics.

[27]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[28]  Gary B. Hughes,et al.  Stability of laser-propelled wafer satellites , 2016, Optical Engineering + Applications.

[29]  Kishan Dholakia,et al.  Light forces the pace: optical manipulation for biophotonics. , 2010, Journal of biomedical optics.

[30]  C. Caloz,et al.  Metasurface Solar Sail for flexible Radiation Pressure Control , 2017, 1710.02837.

[31]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[32]  D. Grier A revolution in optical manipulation , 2003, Nature.

[33]  Cornelia Denz,et al.  Advanced optical trapping by complex beam shaping , 2013 .

[34]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[35]  Grover A. Swartzlander Radiation pressure on a diffractive sailcraft , 2017, 1703.02940.

[36]  G. MARX,et al.  Interstellar Vehicle Propelled By Terrestrial Laser Beam , 1966, Nature.

[37]  M. Efendiev,et al.  On the stability of a space vehicle riding on an intense laser beam , 2016, 1610.08043.

[38]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[39]  M. Soljačić,et al.  Topologically enabled optical nanomotors , 2017, Science Advances.

[40]  Kishan Dholakia,et al.  Optical trapping with planar silicon metalenses. , 2018, Optics letters.

[41]  C. Caloz,et al.  Metasurface solar sail , 2017, 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[42]  John Yen,et al.  Introduction , 2004, CACM.

[43]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[44]  Jun Chen,et al.  Optical pulling force , 2011 .

[45]  J. Ignacio Cirac,et al.  Toward quantum superposition of living organisms , 2009, 0909.1469.

[46]  Miles Padgett,et al.  Holographic optical tweezers and their relevance to lab on chip devices. , 2011, Lab on a chip.

[47]  Lukas Novotny,et al.  Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.

[48]  B C Buchler,et al.  Scattering-free optical levitation of a cavity mirror. , 2013, Physical review letters.

[49]  Federico Capasso,et al.  Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. , 2012, Nano letters.

[50]  Hong-Ren Jiang,et al.  Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. , 2010, Physical review letters.

[51]  Steven M Block,et al.  Optical tweezers study life under tension. , 2011, Nature photonics.

[52]  M. Brongersma,et al.  Silicon Mie resonators for highly directional light emission from monolayer MoS2 , 2018, Nature Photonics.

[53]  Jörg Baumgartl,et al.  Optically mediated particle clearing using Airy wavepackets , 2008 .

[54]  Aristide Dogariu,et al.  Optically induced 'negative forces' , 2012, Nature Photonics.

[55]  Frank Cichos,et al.  Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging , 2013 .

[56]  P. Ginzburg,et al.  Optical Manipulation along an Optical Axis with a Polarization Sensitive Meta-Lens. , 2018, Nano letters.

[57]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[58]  D. E. Chang,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009, Proceedings of the National Academy of Sciences.

[59]  P. Lubin A Roadmap to Interstellar Flight , 2016, 1604.01356.