A Reservoir of Ionized Gas in the Galactic Halo to Sustain Star Formation in the Milky Way

Clouds of ionized gas located inside our Galaxy provide a major supply of matter for fueling ongoing star formation. Without a source of new gas, our Galaxy would exhaust its supply of gas through the formation of stars. Ionized gas clouds observed at high velocity may be a reservoir of such gas, but their distances are key for placing them in the galactic halo and unraveling their role. We have used the Hubble Space Telescope to blindly search for ionized high-velocity clouds (iHVCs) in the foreground of galactic stars. We show that iHVCs with 90 ≤ |vLSR| ≲ 170 kilometers per second (where vLSR is the velocity in the local standard of rest frame) are within one galactic radius of the Sun and have enough mass to maintain star formation, whereas iHVCs with |vLSR| ≳ 170 kilometers per second are at larger distances. These may be the next wave of infalling material.

[1]  C. Danforth,et al.  A LARGE RESERVOIR OF IONIZED GAS IN THE GALACTIC HALO: IONIZED SILICON IN HIGH-VELOCITY AND INTERMEDIATE-VELOCITY CLOUDS , 2009, 0904.4901.

[2]  J. Binney,et al.  Accretion of gas on to nearby spiral galaxies , 2008, 0802.0496.

[3]  D. Weinberg,et al.  Feedback and recycled wind accretion: assembling the z= 0 galaxy mass function , 2009, 0912.0519.

[4]  F. Keenan,et al.  Metallicity and Physical Conditions in the Magellanic Bridge , 2008, 0801.2534.

[5]  B. Savage,et al.  The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .

[6]  D. York,et al.  Distances to Galactic High-Velocity Clouds: Complex C , 2007, 0710.3340.

[7]  B. Whitney,et al.  THE PRESENT-DAY STAR FORMATION RATE OF THE MILKY WAY DETERMINED FROM SPITZER-DETECTED YOUNG STELLAR OBJECTS , 2010, 1001.3672.

[8]  J. Peek,et al.  An Accurate Distance to High-Velocity Cloud Complex C , 2007, 0712.0612.

[9]  D. York,et al.  Distances to Galactic High-Velocity Clouds. I. Cohen Stream, Complex GCP, Cloud g1 , 2007, 0709.1926.

[10]  F. Keenan,et al.  Ca II K interstellar observations towards early-type disc and halo stars – distances to intermediate- and high-velocity clouds , 2003 .

[11]  J. Peek,et al.  RECONSTRUCTING DECONSTRUCTION: HIGH-VELOCITY CLOUD DISTANCE THROUGH DISRUPTION MORPHOLOGY , 2006, astro-ph/0610429.

[12]  Distances and Metallicities of High- and Intermediate-Velocity Clouds , 2001, astro-ph/0102147.

[13]  B. Savage,et al.  A Sensitive Search for Galactic High-Velocity H i Clouds , 1995 .

[14]  J. Shull,et al.  HUBBLE SPACE TELESCOPE SURVEY OF INTERSTELLAR HIGH-VELOCITY Si iii , 2009, 0909.4900.

[15]  J. Masiero,et al.  A POPULATION OF WEAK METAL-LINE ABSORBERS SURROUNDING THE MILKY WAY , 2009, 0901.2567.

[16]  A. Kravtsov,et al.  FUEL EFFICIENT GALAXIES: SUSTAINING STAR FORMATION WITH STELLAR MASS LOSS , 2010, 1011.1252.

[17]  M. Putman,et al.  THE FATE OF HIGH-VELOCITY CLOUDS: WARM OR COLD COSMIC RAIN? , 2009, 0904.1995.

[18]  C. Chiappini,et al.  Abundance Gradients and the Formation of the Milky Way , 2001, astro-ph/0102134.

[19]  S. Friedman,et al.  Interstellar Deuterium, Nitrogen, and Oxygen Abundances toward BD +28°4211: Results from the FUSE Mission , 2002, astro-ph/0201177.

[20]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[21]  H. W. Moos,et al.  Highly Ionized High-Velocity Gas in the Vicinity of the Galaxy , 2002, astro-ph/0207562.

[22]  S. Moehler,et al.  Early type stars at high galactic latitudes I. Ten young massive B-type stars , 2001, astro-ph/0109472.

[23]  L. Hernquist,et al.  SEEDING THE FORMATION OF COLD GASEOUS CLOUDS IN MILKY WAY-SIZE HALOS , 2009, 0905.2186.

[24]  F. Keenan,et al.  HST/STIS observations of the high-velocity interstellar cloud HVC 291.2-41.2+80: a warm, mainly ionized high-velocity cloud , 2001 .

[25]  Cynthia S. Froning,et al.  The cosmic origins spectrograph: capabilities and prelaunch performance , 2009 .

[26]  High-Velocity Rain: The Terminal Velocity Model of Galactic Infall , 1996, astro-ph/9612180.

[27]  David N. Spergel,et al.  High-Velocity Clouds: Building Blocks of the Local Group , 1998, astro-ph/9803251.

[28]  J. Binney,et al.  Galactic fountains and the rotation of disc-galaxy coronae , 2011, 1103.5358.

[29]  B. Savage,et al.  Highly Ionized Gas in the Galactic Halo: A FUSE Survey of O VI Absorption toward 22 Halo Stars , 2002, astro-ph/0212196.

[30]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[31]  S. Mathur,et al.  The far-ultraviolet signature of the ‘missing’ baryons in the Local Group of galaxies , 2003, Nature.

[32]  High-velocity clouds , 2010 .

[33]  W. Dixon,et al.  The High-Velocity Gas toward Messier 5: Tracing Feedback Flows in the Inner Galaxy , 2008, 0802.0286.

[34]  L. Blitz,et al.  THE GAS CONSUMPTION HISTORY TO REDSHIFT 4 , 2009, 0909.3840.

[35]  B. Savage,et al.  A Survey of O VI, C III, and H I in Highly Ionized High-Velocity Clouds , 2006, astro-ph/0604091.

[36]  N. Lehner,et al.  ORIGIN(S) OF THE HIGHLY IONIZED HIGH-VELOCITY CLOUDS BASED ON THEIR DISTANCES , 2009, 0911.2732.