Combining Stereovision Matching Constraints for Solving the Correspondence Problem
暂无分享,去创建一个
[1] E. Schwalbe. GEOMETRIC MODELLING AND CALIBRATION OF FISHEYE LENS CAMERA SYSTEMS , 2005 .
[2] David G. Stork,et al. Pattern Classification , 1973 .
[3] Jacky Baltes,et al. Practical Region-Based Matching for Stereo Vision , 2004, IWCIA.
[4] Gonzalo Pajares,et al. Local stereovision matching through the ADALINE neural network , 2001, Pattern Recognit. Lett..
[5] Andreas Koschan,et al. Digital Color Image Processing , 2008 .
[6] Soo-Yeong Yi,et al. Usinig Optical Flow as an Additional Constraint for Solving the Correspondence Problem in Binocular Stereopsis , 2008 .
[7] Gonzalo Pajares Martinsanz,et al. A new learning strategy for stereo matching derived from a fuzzy clustering method , 2000 .
[8] Yeong-Ho Ha,et al. Stereo matching algorithm based on modified wavelet decomposition process , 1997, Pattern Recognit..
[9] Subhash C. Bagui,et al. Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.
[10] Gérard G. Medioni,et al. Detection of Intensity Changes with Subpixel Accuracy Using Laplacian-Gaussian Masks , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[11] Mohan M. Trivedi,et al. Region-based stereo analysis for robotic applications , 1989, IEEE Trans. Syst. Man Cybern..
[12] Martin A. Fischler,et al. Computational Stereo , 1982, CSUR.
[13] Emilio Corchado,et al. Intelligent Data Engineering and Automated Learning - IDEAL 2006, 7th International Conference, Burgos, Spain, September 20-23, 2006, Proceedings , 2006, IDEAL.
[14] K. Ramesh Babu,et al. Linear Feature Extraction and Description , 1979, IJCAI.
[15] Gonzalo Pajares,et al. Stereo matching based on the self-organizing feature-mapping algorithm , 1998, Pattern Recognit. Lett..
[16] Shigeo Abe DrEng. Pattern Classification , 2001, Springer London.
[17] Jia-Guu Leu,et al. Detecting the dislocations in metal crystals from microscopic images , 1990, Pattern Recognit..
[18] Long Quan,et al. Region-based progressive stereo matching , 2004, CVPR 2004.
[19] Eric Backer,et al. Finding point correspondences using simulated annealing , 1995, Pattern Recognit..
[20] Gonzalo Pajares,et al. A new learning strategy for stereo matching derived from a fuzzy clustering method , 2000, Fuzzy Sets Syst..
[21] Robert A. Lordo,et al. Learning from Data: Concepts, Theory, and Methods , 2001, Technometrics.
[22] Nasser M. Nasrabadi,et al. Hopfield network for stereo vision correspondence , 1992, IEEE Trans. Neural Networks.
[23] Gonzalo Pajares,et al. Relaxation labeling in stereo image matching , 2000, Pattern Recognit..
[24] Yassine Ruichek,et al. A neural matching algorithm for 3-D reconstruction from stereo pairs of linear images , 1996, Pattern Recognit. Lett..
[25] I ScottKirkpatrick. Optimization by Simulated Annealing: Quantitative Studies , 1984 .
[26] Emile H. L. Aarts,et al. Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.
[27] W. Eric L. Grimson,et al. Computational Experiments with a Feature Based Stereo Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[28] Davi Geiger,et al. Local Feature Selection and Global Energy Optimization in Stereo , 2007 .
[29] P. J. Herrera,et al. Choquet Fuzzy Integral Applied to Stereovision Matching for Fish-Eye Lenses in Forest Analysis , 2009 .
[30] Leon W. Rutland. Advanced Engineering Mathematics. Erwin Kreyszig. Wiley, New York, 1962. xvii + 856 pp. Illus. $10.50 , 1963 .
[31] Andreas Klaus,et al. Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure , 2006, 18th International Conference on Pattern Recognition (ICPR'06).
[32] Ralf Kories,et al. Stereo Ranging with Verging Cameras , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[33] Gonzalo Pajares Martinsanz,et al. On combining support vector machines and simulated annealing in stereovision matching , 2004 .
[34] Arthur P. Dempster,et al. A Generalization of Bayesian Inference , 1968, Classic Works of the Dempster-Shafer Theory of Belief Functions.
[35] Filiberto Pla,et al. Dealing with segmentation errors in region-based stereo matching , 2000, Pattern Recognit..
[36] Gonzalo Pajares,et al. Combination of Attributes in Stereovision Matching for Fish-Eye Lenses in Forest Analysis , 2009, ACIVS.
[37] Gonzalo Pajares,et al. The non-parametric Parzen's window in stereo vision matching , 2002, IEEE Trans. Syst. Man Cybern. Part B.
[38] Gonzalo Pajares Martinsanz,et al. Choquet Fuzzy Integral Applied to Stereovision Matching for Fish-Eye Lenses in Forest Analysis , 2009 .
[39] Gonzalo Pajares Martinsanz,et al. Visión por computador: imágenes digitales y aplicaciones , 2001 .
[40] Gonzalo Pajares,et al. Fuzzy Cognitive Maps for stereovision matching , 2006, Pattern Recognit..
[41] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[42] Thomas S. Huang,et al. Learning and Feature Selection in Stereo Matching , 1994, IEEE Trans. Pattern Anal. Mach. Intell..
[43] Gonzalo Pajares,et al. Stereo matching using Hebbian learning , 1999, IEEE Trans. Syst. Man Cybern. Part B.
[44] Simon Haykin,et al. Neural Networks: A Comprehensive Foundation , 1998 .
[45] Zezhi Chen,et al. Image dense matching based on region growth with adaptive window , 2002, Pattern Recognit. Lett..
[46] Gonzalo Pajares,et al. Stereovision matching through support vector machine , 2003, Pattern Recognit. Lett..
[47] Harvey F. Silverman,et al. A Class of Algorithms for Fast Digital Image Registration , 1972, IEEE Transactions on Computers.
[48] Shuichi Tanaka,et al. A rule-based approach to binocular stereopsis , 1988 .
[49] Bruce E. Hajek,et al. Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..
[50] Vladimir Cherkassky,et al. Learning from Data: Concepts, Theory, and Methods , 1998 .
[51] Richard Szeliski,et al. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.
[52] Roland Siegwart,et al. Robust Feature Extraction and Matching for Omnidirectional Images , 2007, FSR.
[53] Yassine Ruichek,et al. Global Techniques for Edge based Stereo Matching , 2007 .
[54] Gonzalo Pajares,et al. Fuzzy Multi-Criteria Decision Making in Stereovision Matching for Fish-Eye Lenses in Forest Analysis , 2009, IDEAL.
[55] Wilfried Philips,et al. Advanced Concepts for Intelligent Vision Systems , 2011, Lecture Notes in Computer Science.
[56] Glenn Shafer,et al. A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.
[57] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[58] Pedro Javier Herrera Caro. Correspondencia estereoscópica en imágenes obtenidas con proyección omnidireccional para entornos forestales , 2011 .
[59] Ramakant Nevatia,et al. Segment-based stereo matching , 1985, Comput. Vis. Graph. Image Process..
[60] Pratibha Mishra,et al. Advanced Engineering Mathematics , 2013 .
[61] Gonzalo Pajares,et al. Relaxation by Hopfield network in stereo image matching , 1998, Pattern Recognit..
[62] Wolfgang Förstner,et al. Fish-Eye-Stereo Calibration and Epipolar Rectification , 2005 .
[63] Long Quan,et al. Region-based progressive stereo matching , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..
[64] Anil K. Jain,et al. Analysis and Interpretation of Range Images , 1989, Springer Series in Perception Engineering.
[65] Gonzalo Pajares,et al. A Featured-Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest Environments , 2009, Sensors.
[66] Linda G. Shapiro,et al. Computer and Robot Vision , 1991 .
[67] E. Kreyszig,et al. Advanced Engineering Mathematics. , 1974 .