Combining Stereovision Matching Constraints for Solving the Correspondence Problem

A major portion of the research efforts of the computer vision community has been directed toward the study of the three-dimensional (3-D) structure of objects using machine analysis of images (Scharstein & Szeliski, 2002). We can view the problem of stereo analysis as consisting of the following steps: image acquisition, camera modelling, feature acquisition, image matching, depth determination and interpolation. The key step is that of image matching, that is, the process of identifying the corresponding points in two images that are cast by the same physical point in 3-D space (Barnard & Fishler, 1982). This chapter is devoted solely to this problem. A correspondence needs to be established between features from two images that correspond to some physical feature in space. Then, provided that the position of centres of projection, the focal length, the orientation of the optical axes, and the sampling interval of each camera are known, the depth can be established by triangulation. The stereo correspondence problem can be defined in terms of finding pairs of true matches, namely, pairs of features in two images that are generated by the same physical entity in space. These true matches generally satisfy some constraints (Tang et al., 2002): 1. Epipolar, given two features, one in an image and a second in the other one in the stereoscopic pair, if we follow a given line, established by the system geometry, these two features must lie on this line, which is the epipolar. 2. Similarity, matched features have similar local properties or attributes. 3. Smoothness, disparity values in a given neighbourhood change smoothly, except at a few depth discontinuities. 4. Ordering, the relative position among two features in an image is preserved in the other one for the corresponding matches. 5. Uniqueness, each feature in one image should be matched to a unique feature in the other image. A review of the state-of-art in stereovision matching allows us to distinguish two sorts of techniques broadly used in this discipline: area-based and feature-based. Area-based stereo techniques use correlation between brightness (intensity) patterns in the local neighbourhood of a pixel in one image with brightness patterns in the local neighbourhood of the other image (Scharstein & Szeliski, 2002; Herrera et al., 2009a,b,c; Herrera, 2010; Klaus et al., 2006). Feature-based methods use sets of pixels with similar attributes, normally, either pixels belonging to edges (Grimson, 1985; Ruichek & Postaire, 1996; Tang et al., 2002),

[1]  E. Schwalbe GEOMETRIC MODELLING AND CALIBRATION OF FISHEYE LENS CAMERA SYSTEMS , 2005 .

[2]  David G. Stork,et al.  Pattern Classification , 1973 .

[3]  Jacky Baltes,et al.  Practical Region-Based Matching for Stereo Vision , 2004, IWCIA.

[4]  Gonzalo Pajares,et al.  Local stereovision matching through the ADALINE neural network , 2001, Pattern Recognit. Lett..

[5]  Andreas Koschan,et al.  Digital Color Image Processing , 2008 .

[6]  Soo-Yeong Yi,et al.  Usinig Optical Flow as an Additional Constraint for Solving the Correspondence Problem in Binocular Stereopsis , 2008 .

[7]  Gonzalo Pajares Martinsanz,et al.  A new learning strategy for stereo matching derived from a fuzzy clustering method , 2000 .

[8]  Yeong-Ho Ha,et al.  Stereo matching algorithm based on modified wavelet decomposition process , 1997, Pattern Recognit..

[9]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[10]  Gérard G. Medioni,et al.  Detection of Intensity Changes with Subpixel Accuracy Using Laplacian-Gaussian Masks , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Mohan M. Trivedi,et al.  Region-based stereo analysis for robotic applications , 1989, IEEE Trans. Syst. Man Cybern..

[12]  Martin A. Fischler,et al.  Computational Stereo , 1982, CSUR.

[13]  Emilio Corchado,et al.  Intelligent Data Engineering and Automated Learning - IDEAL 2006, 7th International Conference, Burgos, Spain, September 20-23, 2006, Proceedings , 2006, IDEAL.

[14]  K. Ramesh Babu,et al.  Linear Feature Extraction and Description , 1979, IJCAI.

[15]  Gonzalo Pajares,et al.  Stereo matching based on the self-organizing feature-mapping algorithm , 1998, Pattern Recognit. Lett..

[16]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[17]  Jia-Guu Leu,et al.  Detecting the dislocations in metal crystals from microscopic images , 1990, Pattern Recognit..

[18]  Long Quan,et al.  Region-based progressive stereo matching , 2004, CVPR 2004.

[19]  Eric Backer,et al.  Finding point correspondences using simulated annealing , 1995, Pattern Recognit..

[20]  Gonzalo Pajares,et al.  A new learning strategy for stereo matching derived from a fuzzy clustering method , 2000, Fuzzy Sets Syst..

[21]  Robert A. Lordo,et al.  Learning from Data: Concepts, Theory, and Methods , 2001, Technometrics.

[22]  Nasser M. Nasrabadi,et al.  Hopfield network for stereo vision correspondence , 1992, IEEE Trans. Neural Networks.

[23]  Gonzalo Pajares,et al.  Relaxation labeling in stereo image matching , 2000, Pattern Recognit..

[24]  Yassine Ruichek,et al.  A neural matching algorithm for 3-D reconstruction from stereo pairs of linear images , 1996, Pattern Recognit. Lett..

[25]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[26]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[27]  W. Eric L. Grimson,et al.  Computational Experiments with a Feature Based Stereo Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Davi Geiger,et al.  Local Feature Selection and Global Energy Optimization in Stereo , 2007 .

[29]  P. J. Herrera,et al.  Choquet Fuzzy Integral Applied to Stereovision Matching for Fish-Eye Lenses in Forest Analysis , 2009 .

[30]  Leon W. Rutland Advanced Engineering Mathematics. Erwin Kreyszig. Wiley, New York, 1962. xvii + 856 pp. Illus. $10.50 , 1963 .

[31]  Andreas Klaus,et al.  Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[32]  Ralf Kories,et al.  Stereo Ranging with Verging Cameras , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Gonzalo Pajares Martinsanz,et al.  On combining support vector machines and simulated annealing in stereovision matching , 2004 .

[34]  Arthur P. Dempster,et al.  A Generalization of Bayesian Inference , 1968, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[35]  Filiberto Pla,et al.  Dealing with segmentation errors in region-based stereo matching , 2000, Pattern Recognit..

[36]  Gonzalo Pajares,et al.  Combination of Attributes in Stereovision Matching for Fish-Eye Lenses in Forest Analysis , 2009, ACIVS.

[37]  Gonzalo Pajares,et al.  The non-parametric Parzen's window in stereo vision matching , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[38]  Gonzalo Pajares Martinsanz,et al.  Choquet Fuzzy Integral Applied to Stereovision Matching for Fish-Eye Lenses in Forest Analysis , 2009 .

[39]  Gonzalo Pajares Martinsanz,et al.  Visión por computador: imágenes digitales y aplicaciones , 2001 .

[40]  Gonzalo Pajares,et al.  Fuzzy Cognitive Maps for stereovision matching , 2006, Pattern Recognit..

[41]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[42]  Thomas S. Huang,et al.  Learning and Feature Selection in Stereo Matching , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Gonzalo Pajares,et al.  Stereo matching using Hebbian learning , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[44]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[45]  Zezhi Chen,et al.  Image dense matching based on region growth with adaptive window , 2002, Pattern Recognit. Lett..

[46]  Gonzalo Pajares,et al.  Stereovision matching through support vector machine , 2003, Pattern Recognit. Lett..

[47]  Harvey F. Silverman,et al.  A Class of Algorithms for Fast Digital Image Registration , 1972, IEEE Transactions on Computers.

[48]  Shuichi Tanaka,et al.  A rule-based approach to binocular stereopsis , 1988 .

[49]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[50]  Vladimir Cherkassky,et al.  Learning from Data: Concepts, Theory, and Methods , 1998 .

[51]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[52]  Roland Siegwart,et al.  Robust Feature Extraction and Matching for Omnidirectional Images , 2007, FSR.

[53]  Yassine Ruichek,et al.  Global Techniques for Edge based Stereo Matching , 2007 .

[54]  Gonzalo Pajares,et al.  Fuzzy Multi-Criteria Decision Making in Stereovision Matching for Fish-Eye Lenses in Forest Analysis , 2009, IDEAL.

[55]  Wilfried Philips,et al.  Advanced Concepts for Intelligent Vision Systems , 2011, Lecture Notes in Computer Science.

[56]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[57]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[58]  Pedro Javier Herrera Caro Correspondencia estereoscópica en imágenes obtenidas con proyección omnidireccional para entornos forestales , 2011 .

[59]  Ramakant Nevatia,et al.  Segment-based stereo matching , 1985, Comput. Vis. Graph. Image Process..

[60]  Pratibha Mishra,et al.  Advanced Engineering Mathematics , 2013 .

[61]  Gonzalo Pajares,et al.  Relaxation by Hopfield network in stereo image matching , 1998, Pattern Recognit..

[62]  Wolfgang Förstner,et al.  Fish-Eye-Stereo Calibration and Epipolar Rectification , 2005 .

[63]  Long Quan,et al.  Region-based progressive stereo matching , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[64]  Anil K. Jain,et al.  Analysis and Interpretation of Range Images , 1989, Springer Series in Perception Engineering.

[65]  Gonzalo Pajares,et al.  A Featured-Based Strategy for Stereovision Matching in Sensors with Fish-Eye Lenses for Forest Environments , 2009, Sensors.

[66]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[67]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .