Nonlinear control of the air feed of a fuel cell

This document presents the design of a hierarchical control to regulate the oxygen excess ratio of a fuel cell. The master controller calculates the necessary air flow to stabilize the oxygen excess ratio at a fixed set point. A nonlinear model based predictive controller (NMPC) using a Volterra series model is used as a master controller. The slave controller, a nonlinear PI, uses the reference of the air flow calculated by the master controller to stabilize the air flow in the compressor and allows reference tracking. The proposed control strategy is applied to full nonlinear model of a fuel cell in which simulations are carried out.

[1]  Alessandro Astolfi,et al.  Nonlinear PI control of uncertain systems: an alternative to parameter adaptation , 2002, Syst. Control. Lett..

[2]  Anna G. Stefanopoulou,et al.  Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design , 2004 .

[3]  Robert D. Nowak,et al.  Random and pseudorandom inputs for Volterra filter identification , 1994, IEEE Trans. Signal Process..

[4]  C. Bordons,et al.  Constrained predictive control strategies for PEM fuel cells , 2006, 2006 American Control Conference.

[5]  Anna G. Stefanopoulou,et al.  Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems , 2004 .

[6]  Chi-Wei Huang,et al.  Robust control design of a Proton Exchange Membrane fuel-cell system , 2007, 2007 European Control Conference (ECC).

[7]  E H Law,et al.  Model-based control strategies in the dynamic interaction of air supply and fuel cell , 2004 .

[8]  Francis J. Doyle,et al.  Identification and Control Using Volterra Models , 2001 .

[9]  M.G. Simoes,et al.  Neural optimal control of PEM fuel cells with parametric CMAC networks , 2003, IEEE Transactions on Industry Applications.

[10]  Alessandro Astolfi,et al.  Nonlinear PI Control of Uncertain Systems , 2008 .

[11]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[12]  Fu-Cheng Wang,et al.  Design and implementation of fixed-order robust controllers for a proton exchange membrane fuel cell system , 2009 .

[13]  P. R. Pathapati,et al.  A new dynamic model for predicting transient phenomena in a PEM fuel cell system , 2005 .

[14]  A.G. Stefanopoulou,et al.  Control of fuel cell breathing , 2004, IEEE Control Systems.

[15]  Anna G. Stefanopoulou,et al.  Control of Fuel Cell Power Systems , 2004 .

[16]  J. K. Gruber,et al.  Control predictivo no lineal basado en modelos de Volterra. Aplicación a una planta piloto , 2007 .