Zeros and Poles of Linear Continuous-Time Periodic Systems: Definitions and Properties

The paper deals with definitions of zeros and poles and their features in finite-dimensional linear continuous-time periodic (FDLCP) systems under a harmonic framework. More precisely, system and transfer zeros and poles in the harmonic wave-to-wave sense are defined on what we call the regularized harmonic system operators and the harmonic transfer operators of FDLCP systems by means of regularized determinants; then their composition and properties related to system structures are examined via the Floquet theory and controllability/observability decompositions of FDLCP systems. The study shows that under mild assumptions, the harmonic transfer operators of FDLCP systems are analytic and meromorphic, on which zeros and poles are well-defined. Basic zero/pole relationships are established, which are similar to their linear time-invariant counterparts and in particular explicate some interesting harmonic wave-to-wave behaviors of FDLCP systems. The results are significant in analysis and synthesis of FDLCP systems when the harmonic approach is adopted.

[1]  Raymond J. Spiteri,et al.  Real Floquet factors of linear time-periodic systems , 2003, Syst. Control. Lett..

[2]  Henrik Sandberg,et al.  Frequency-domain analysis of linear time-periodic systems , 2005, IEEE Transactions on Automatic Control.

[3]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[4]  M. Pavella,et al.  Transient stability of power systems: Theory and practice , 1994 .

[5]  Marco Lovera,et al.  On the Role of Zeros in Rotorcraft Aeromechanics , 2004 .

[6]  N. Karcanias,et al.  Poles and zeros of linear multivariable systems : a survey of the algebraic, geometric and complex-variable theory , 1976 .

[7]  T. Runolfsson,et al.  Vibrational feedback control: Zeros placement capabilities , 1987 .

[8]  András Varga Robust and minimum norm pole assignment with periodic state feedback , 2000, IEEE Trans. Autom. Control..

[9]  JUN ZHOU,et al.  2-Regularized Nyquist Criterion in Linear Continuous-Time Periodic Systems and Its Implementation , 2005, SIAM J. Control. Optim..

[10]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[11]  Paolo Bolzern,et al.  Stabilizability and detectability of linear periodic systems , 1985 .

[12]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[13]  Giuseppe De Nicolao,et al.  Zeros of Continuous-time Linear Periodic Systems , 1998, Autom..

[14]  Michael J. Grimble,et al.  Industrial Control Systems Design , 1994 .

[15]  Arch W. Naylor,et al.  Linear Operator Theory in Engineering and Science , 1971 .

[16]  J. Dugundji,et al.  Some analysis methods for rotating systems with periodic coefficients , 1983 .

[17]  Michael K. Sain,et al.  Subzeros of Linear Multivariable Systems , 1989, 1989 American Control Conference.

[18]  Jun Zhou,et al.  A Harmonic Framework for Controllability in Linear Continuous-Time Periodic Systems , 2007, SIAM J. Control. Optim..

[19]  Tomomichi Hagiwara Analytic study on the intrinsic zeros of sampled-data systems , 1996, IEEE Trans. Autom. Control..

[20]  Jun Zhou,et al.  Existence Conditions and Properties of the Frequency Response Operators of Continuous-Time Periodic Systems , 2001, SIAM J. Control. Optim..

[21]  Patrizio Colaneri,et al.  Zeros of discrete-time linear periodic systems , 1986 .

[22]  A. C. Soudack,et al.  Ship stability via the Mathieu equation , 1990 .

[23]  K. Poolla,et al.  Robust control of linear time-invariant plants using periodic compensation , 1985 .

[24]  Norman M. Wereley,et al.  Frequency response of linear time periodic systems , 1990, 29th IEEE Conference on Decision and Control.

[25]  Sauro Longhi,et al.  Zeros and poles of linear periodic multivariable discrete-time systems , 1988 .

[26]  M. Sain,et al.  Research on system zeros: a survey , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[27]  Henrik Sandberg,et al.  A Bode sensitivity integral for linear time-periodic systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[28]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[29]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[30]  S. Bhattacharyya,et al.  On blocking zeros , 1977 .

[31]  Miklós Farkas,et al.  Periodic Motions , 1994 .

[32]  Jun Zhou,et al.  Spectral characteristics and eigenvalues computation of the harmonic state operators in continuous-time periodic systems , 2004, Syst. Control. Lett..

[33]  Patrizio Colaneri,et al.  Theoretical aspects of continuous-time periodic systems , 2005, Annu. Rev. Control..

[34]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[35]  Jun Zhou,et al.  Stability analysis of continuous-time periodic systems via the harmonic analysis , 2002, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[36]  Norman M. Wereley,et al.  Analysis and control of linear periodically time varying systems , 1990 .

[37]  P. van der Kloet,et al.  On Characteristic Equations, Dynamic Eigenvalues, Lyapunov Exponents and Floquet Numbers for Linear Time-Varying Systems , 2022 .

[38]  I. Gohberg,et al.  Classes of Linear Operators , 1990 .

[39]  Bernd Silbermann,et al.  Analysis of Toeplitz Operators , 1991 .

[40]  W. Rudin Real and complex analysis , 1968 .