Tuning Electronic and magnetic properties of phosphorene by vacancies and adatoms

We report a density functional theory (DFT) study regarding the effects of atomic defects, such as vacancies and adatom adsorption, on the electronic and magnetic properties of phosphorene (a two-dimensional monolayer of black phosphorus). A monovacancy in the phosphorene creates an in-gap state in the band gap of pristine phosphorene and induces a magnetic moment, even though pristine phosphorene is nonmagnetic. In contrast, both planar and staggered divacancies do not change the magnetic properties of phosphorene, although a staggered divacancy creates states in the gap. Our DFT calculations also show that adsorption of nonmetallic elements (C, N, and O) and transition metal elements (Fe, Co, and Ni) can change the magnetic properties of phosphorene with or without vacancies. For example, the nonmagnetic pristine phosphorene becomes magnetic after the adsorption of N, Fe, or Co adatoms, and the magnetic phosphorene with a monovacancy becomes nonmagnetic after the adsorption of C, N, or Co atoms. We also...

[1]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[2]  Xianfan Xu,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[3]  M. Nolan,et al.  Hole localization in Al doped silica: A DFT + U description. , 2006, The Journal of chemical physics.

[4]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. , 2014, Nature communications.

[5]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[6]  D. Chadi,et al.  Special points for Brillouin-zone integrations , 1977 .

[7]  Helmut Ehrenberg,et al.  Gaining Insights into the Energetics of FePO4 Polymorphs , 2010 .

[8]  M. E. A. Dompablo,et al.  DFT+U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs. , 2011, The Journal of chemical physics.

[9]  A S Rodin,et al.  Strain-induced gap modification in black phosphorus. , 2014, Physical review letters.

[10]  H. Valencia,et al.  Trends in the Adsorption of 3d Transition Metal Atoms onto Graphene and Nanotube Surfaces: A DFT Study and Molecular Orbital Analysis , 2010 .

[11]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[12]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[13]  R. Keyes The Electrical Properties of Black Phosphorus , 1953 .

[14]  Haiming Xie,et al.  Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries , 2012 .

[15]  A. Krasheninnikov,et al.  Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. , 2009, Physical review letters.

[16]  R. Soklaski,et al.  Layer-Controlled Band Gap and Anisotropic Excitons in Phosphorene , 2014, 1402.4192.

[17]  Rajeev Ahuja,et al.  Strain Engineering for Phosphorene: The Potential Application as a Photocatalyst , 2014 .

[18]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[19]  F. Bechstedt,et al.  Energetic stability and magnetic properties of MnO in the rocksalt, wurtzite, and zinc-blende structures: Influence of exchange and correlation , 2010 .

[20]  D. Coker,et al.  Oxygen defects in phosphorene. , 2014, Physical review letters.

[21]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[22]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[23]  Shuichi Nosé,et al.  Constant Temperature Molecular Dynamics Methods , 1991 .

[24]  Wei Yi,et al.  Surface Structures of Black Phosphorus Investigated with Scanning Tunneling Microscopy , 2009 .

[25]  Gotthard Seifert,et al.  Defect-induced conductivity anisotropy in MoS2monolayers , 2013, 1311.0474.

[26]  S. Rundqvist,et al.  Refinement of the crystal structure of black phosphorus , 1965 .

[27]  Evaluation of Phosphorene as Anode Material for Na-ion Batteries from First Principles , 2015, 1501.02425.

[28]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[29]  A. Bell,et al.  DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth , 2013 .

[30]  Gang Zhang,et al.  Strong Thermal Transport Anisotropy and Strain Modulation in Single-Layer Phosphorene , 2014 .

[31]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[32]  Wei Ji,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature communications.

[33]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[34]  M. V. Ganduglia-Pirovano,et al.  Formation of the cerium orthovanadate CeVO4 : DFT+ U study , 2007 .

[35]  Li Yang,et al.  Strain-Engineering Anisotropic Electrical Conductance of Phosphorene , 2014 .

[36]  Jun Dai,et al.  Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. , 2014, The journal of physical chemistry letters.

[37]  H. Xiang,et al.  Effective control of the charge and magnetic states of transition-metal atoms on single-layer boron nitride. , 2012, Physical review letters.

[38]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[39]  Xiaojun Wu,et al.  Phosphorene Nanoribbons, Phosphorus Nanotubes, and van der Waals Multilayers , 2014, 1403.6209.

[40]  T. G. Worlton,et al.  Effect of pressure on bonding in black phosphorus , 1979 .

[41]  A. H. Castro Neto,et al.  Electric field effect in ultrathin black phosphorus , 2014 .

[42]  K. T. Law,et al.  Negative Quantum Capacitance Induced by Midgap States in Single-layer Graphene , 2013, Scientific Reports.

[43]  Li Yang,et al.  Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. , 2014, Nano letters.

[44]  Qun Wei,et al.  Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene , 2014 .

[45]  L. Kleinman,et al.  Energy fluctuations induced by the Nosé thermostat. , 1992, Physical review. B, Condensed matter.

[46]  Yan Li,et al.  Modulation of the Electronic Properties of Ultrathin Black Phosphorus by Strain and Electrical Field , 2014 .

[47]  Li Yang,et al.  Scaling laws for the band gap and optical response of phosphorene nanoribbons , 2014 .

[48]  John Robertson,et al.  Intrinsic defects in ZnO calculated by screened exchange and hybrid density functionals , 2010 .

[49]  Francesc Illas,et al.  First-principles LDA+U and GGA+U study of cerium oxides : Dependence on the effective U parameter , 2007 .

[50]  S. Shi,et al.  Ab initio studies on atomic and electronic structures of black phosphorus , 2010 .

[51]  Douglas M. Warschauer,et al.  Electrical and Optical Properties of Crystalline Black Phosphorus , 1963 .

[52]  P. Bridgeman Two new modifications of Phosphorus , 1916 .

[53]  A. Rodin,et al.  Phosphorene nanoribbons , 2014, 1404.5115.

[54]  O. Gunnarsson,et al.  Density-functional calculation of effective Coulomb interactions in metals. , 1991, Physical review. B, Condensed matter.