Island formation and dynamics of gold clusters on amorphous carbon films

Samples of Au clusters deposited by laser ablation on an amorphous-carbon substrate are investigated. After a few months' storage at room temperature, the initially statistically distributed clusters are found to be collected in agglomerates consisting of larger clusters embedded in a Au film typically covering areas of size $25\ifmmode\times\else\texttimes\fi{}70\phantom{\rule{0.3em}{0ex}}{\mathrm{nm}}^{2}$. The Au film is determined to be probably 4 to 8 monolayers but at most $7\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$ thick. Evidence is found that a number of clusters consisting of less than 50 atoms are pinned at intrusions of the substrate. These results were derived using high-resolution transmission electron microscopy and off-axis holography measurements to characterize the agglomerates as well as the substrate. Monte Carlo simulations were performed to model the film formation process. To this end, the substrate-Au interaction was determined using density functional calculations, while the $\mathrm{Au}\char21{}\mathrm{Au}$ interaction was modeled with effective many-body Gupta potentials. The film formation can be understood as diffusion and fusion of clusters of intermediate ($50lNl300$ atoms) size. Larger clusters are more stable at room temperature and remain adsorbed on the Au film.

[1]  M. Weinert,et al.  Stacking faults in magnesium , 1997 .

[2]  U. Landman,et al.  Melting of gold clusters , 1999 .

[3]  R. Baragiola,et al.  Electron emission from carbon foils induced by keV ions , 1998 .

[4]  N. A. Gjostein,et al.  Supported metal crystallites , 1975 .

[5]  Wilson,et al.  Observation of atomic corrugation on Au(111) by scanning tunneling microscopy. , 1987, Physical review letters.

[6]  U. Heiz,et al.  Chemical reactivity of size-selected supported clusters: An experimental setup , 1997 .

[7]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[8]  Rosenfeld,et al.  Decay of two-dimensional Ag islands on Ag(111). , 1996, Physical review letters.

[9]  R. Wimmer–Schweingruber,et al.  Determination of low-energy ion-induced electron yields from thin carbon foils , 2003 .

[10]  Direct observation of the behavior of the heavy single atoms on amorphous carbon substrates , 1980 .

[11]  Costas P. Grigoropoulos,et al.  On the coalescence of gold nanoparticles , 2004 .

[12]  Jinlan Wang,et al.  Thermal behavior of Cu–Co bimetallic clusters , 2001 .

[13]  A. Petford-Long,et al.  Dynamic Atomic-Level Rearrangements in Small Gold Particles , 1986, Science.

[14]  D. E. Powers,et al.  Laser production of supersonic metal cluster beams , 1981 .

[15]  Peter K. G. Williams,et al.  Motion of small gold clusters in the electron microscope , 1987 .

[16]  Patrick Weis,et al.  Structures of small gold cluster cations (Aun+, n<14): Ion mobility measurements versus density functional calculations , 2002 .

[17]  P. Zeppenfeld,et al.  Observation by scanning tunneling microscopy of a hexagonal Au(111) surface reconstruction induced by oxygen , 1995 .

[18]  Olson,et al.  Discrete periodic melting point observations for nanostructure ensembles , 2000, Physical review letters.

[19]  David Alan Drabold,et al.  Ring formation and the structural and electronic properties of tetrahedral amorphous carbon surfaces , 1998 .

[20]  S. Pratontep,et al.  Metastable ordered arrays of size-selected Ag clusters on graphite , 2003 .

[21]  D. Cazorla-Amorós,et al.  HRTEM study of activated carbons prepared by alkali hydroxide activation of anthracite , 2004 .

[22]  J. Urban Crystallography of Clusters , 1998 .

[23]  Jonathan Doye,et al.  Thermodynamics of Global Optimization , 1998 .

[24]  R. Mclellan The solubility of carbon in solid gold, copper, and silver , 1969 .

[25]  Wang,et al.  Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. , 1991, Physical review. B, Condensed matter.

[26]  D. Sánchez-Portal,et al.  Lowest Energy Structures of Gold Nanoclusters , 1998 .

[27]  T. Becker,et al.  Controlled cluster condensation into preformed nanometer-sized pits , 1997 .

[28]  M. Kappes,et al.  Structures of mixed gold-silver cluster cations (Ag(m)Au(n)+, m+n<6): ion mobility measurements and density-functional calculations. , 2004, The Journal of chemical physics.

[29]  Gabor A. Somorjai,et al.  The surface reconstructions of the (100) crystal faces of iridium, platinum and gold. I. Experimental observations and possible structural models , 1981 .

[30]  Canada.,et al.  Melting, freezing, and coalescence of gold nanoclusters , 1997, cond-mat/9703153.

[31]  N. Bogdanchikova,et al.  Electronic state of gold in supported clusters , 2003 .

[32]  K. Koga,et al.  Size- and temperature-dependent structural transitions in gold nanoparticles. , 2004, Physical review letters.

[33]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[34]  P. Milani,et al.  Improved pulsed laser vaporization source for production of intense beams of neutral and ionized clusters , 1990 .

[35]  G. Schütz,et al.  Cluster surface interactions: small Fe clusters driven nonmagnetic on graphite , 2004 .

[36]  Andreoni,et al.  Melting of small gold particles: Mechanism and size effects. , 1991, Physical review letters.

[37]  Konstantin Nikolic,et al.  A short review of nanoelectronic architectures , 2004 .

[38]  M. Kappes,et al.  A time-of-flight, drift cell, quadrupole apparatus for ion mobility measurements , 2002 .

[39]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[40]  R. Buhl Interferenzmikroskopie mit Elektronenwellen , 1959 .

[41]  Raju P. Gupta Lattice relaxation at a metal surface , 1981 .

[42]  H. Hövel Clusters on surfaces: high-resolution spectroscopy at low temperatures , 2001 .

[43]  Melting and evaporation transitions in small Al clusters: canonical Monte-Carlo simulations , 2004, physics/0412023.

[44]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[45]  M. Ochando,et al.  Calculation of the mean inner potential , 1985 .

[46]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[47]  Clarke,et al.  Scanning tunneling microscopy of the local atomic structure of two-dimensional gold and silver islands on graphite. , 1988, Physical review letters.

[48]  Michael Lehmann,et al.  Tutorial on Off-Axis Electron Holography , 2002, Microscopy and Microanalysis.

[49]  B. Hamilton,et al.  Formation of ordered assemblies from deposited gold clusters , 2002 .

[50]  M. Keller Ein Biprisma-Interferometer für Elektronenwellen und seine Anwendung , 1961 .

[51]  J. Goniakowski,et al.  Effect of epitaxial strain on the atomic structure of Pd clusters on MgO(100) substrate , 2003 .

[52]  E. E. Gruber Calculated Size Distributions for Gas Bubble Migration and Coalescence in Solids , 1967 .

[53]  Paul N. Mortenson,et al.  Energy landscapes: from clusters to biomolecules , 2007 .

[54]  Notker Rösch,et al.  From clusters to bulk: A relativistic density functional investigation on a series of gold clusters Aun, n=6,…,147 , 1997 .

[55]  D. Peng,et al.  Co cluster coalescence behavior observed by electrical conduction and transmission electron microscopy , 2001 .

[56]  M. Drechsler,et al.  Surface self-diffusion studied by microscopic measurements of crystallite profile evolutions , 1981 .