Tumour-associated missense mutations in the dMi-2 ATPase alters nucleosome remodelling properties in a mutation-specific manner

[1]  Patrick Cramer,et al.  Nucleosome-Chd1 structure and implications for chromatin remodelling , 2017, Nature.

[2]  Jeroen A. A. Demmers,et al.  DOC1-Dependent Recruitment of NURD Reveals Antagonism with SWI/SNF during Epithelial-Mesenchymal Transition in Oral Cancer Cells. , 2017, Cell reports.

[3]  A. Brehm,et al.  Blocking promiscuous activation at cryptic promoters directs cell type–specific gene expression , 2017, Science.

[4]  Janet Iwasa,et al.  Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes , 2017, Nature Reviews Molecular Cell Biology.

[5]  C. Zahnow,et al.  CHD4 Has Oncogenic Functions in Initiating and Maintaining Epigenetic Suppression of Multiple Tumor Suppressor Genes. , 2017, Cancer cell.

[6]  Xueming Li,et al.  Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure , 2017, Nature.

[7]  Erik Engelen,et al.  EcR recruits dMi-2 and increases efficiency of dMi-2-mediated remodelling to constrain transcription of hormone-regulated genes , 2017, Nature Communications.

[8]  X. Matías-Guiu,et al.  Chromatin remodelling and DNA repair genes are frequently mutated in endometrioid endometrial carcinoma , 2017, International journal of cancer.

[9]  James M. Berger,et al.  Interdomain Communication of the Chd1 Chromatin Remodeler across the DNA Gyres of the Nucleosome. , 2017, Molecular cell.

[10]  Cigall Kadoch,et al.  Mammalian SWI/SNF complexes in cancer: emerging therapeutic opportunities. , 2017, Current opinion in genetics & development.

[11]  Paul Bertone,et al.  The Nucleosome Remodelling and Deacetylation complex restricts Mediator access to enhancers to control transcription , 2017, bioRxiv.

[12]  G. Narlikar,et al.  Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler , 2017, Science.

[13]  Zhucheng Chen,et al.  Structure and regulation of the chromatin remodeller ISWI , 2016, Nature.

[14]  J. Rosenfeld,et al.  De Novo Mutations in CHD4, an ATP-Dependent Chromatin Remodeler Gene, Cause an Intellectual Disability Syndrome with Distinctive Dysmorphisms. , 2016, American journal of human genetics.

[15]  A. Shilatifard,et al.  Epigenetics of hematopoiesis and hematological malignancies , 2016, Genes & development.

[16]  D. Huylebroeck,et al.  Zeb2 Recruits HDAC-NuRD to Inhibit Notch and Controls Schwann Cell Differentiation and Remyelination , 2016, Nature Neuroscience.

[17]  H. Szerlong,et al.  Regulation of DNA Translocation Efficiency within the Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and Ejection. , 2016, Molecular cell.

[18]  M. Affolter,et al.  BMP morphogen gradients in flies. , 2016, Cytokine & growth factor reviews.

[19]  F. Finkernagel,et al.  A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype , 2015, Oncotarget.

[20]  G. Längst,et al.  Chromatin Remodelers: From Function to Dysfunction , 2015, Genes.

[21]  Konrad Basler,et al.  Coordination of Patterning and Growth by the Morphogen DPP , 2014, Current Biology.

[22]  Q. Pan,et al.  Chd4 and associated proteins function as corepressors of Sox9 expression during BMP‐2–induced chondrogenesis , 2013, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[23]  Claudia B. Zraly,et al.  The Drosophila COMPASS-like Cmi-Trr coactivator complex regulates dpp/BMP signaling in pattern formation. , 2013, Developmental biology.

[24]  T. Owen-Hughes,et al.  Mechanisms and Functions of ATP-Dependent Chromatin-Remodeling Enzymes , 2013, Cell.

[25]  Steven J. M. Jones,et al.  Integrated genomic characterization of endometrial carcinoma , 2013, Nature.

[26]  B. Hendrich,et al.  Transcriptional repressors: multifaceted regulators of gene expression , 2013, Development.

[27]  T. Boggon,et al.  Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma , 2013, Proceedings of the National Academy of Sciences.

[28]  Claudia B. Zraly,et al.  Drosophila LSD1‐CoREST demethylase complex regulates DPP/TGFβ signaling during wing development , 2013, Genesis.

[29]  R. Kingston,et al.  Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders , 2012, Epigenetics & Chromatin.

[30]  B. Cairns,et al.  Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes , 2012, Nature.

[31]  Dennis C. Sgroi,et al.  Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes , 2016 .

[32]  D. Svergun,et al.  The PHD and Chromo Domains Regulate the ATPase Activity of the Human Chromatin Remodeler CHD4 , 2012, Journal of molecular biology.

[33]  D. Dorsett,et al.  The Drosophila Mi-2 Chromatin-Remodeling Factor Regulates Higher-Order Chromatin Structure and Cohesin Dynamics In Vivo , 2012, PLoS genetics.

[34]  M. Scharfe,et al.  Recruitment of the ATP-dependent chromatin remodeler dMi-2 to the transcribed region of active heat shock genes , 2012, Nucleic acids research.

[35]  A. Brehm,et al.  Stress-Induced PARP Activation Mediates Recruitment of Drosophila Mi-2 to Promote Heat Shock Gene Expression , 2011, PLoS genetics.

[36]  Jeffrey N. McKnight,et al.  The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. , 2010, Molecular cell.

[37]  E. Jankowsky,et al.  SF1 and SF2 helicases: family matters. , 2010, Current opinion in structural biology.

[38]  Magdalena Murawska,et al.  dMec: a novel Mi‐2 chromatin remodelling complex involved in transcriptional repression , 2009, The EMBO journal.

[39]  J. Vandekerckhove,et al.  Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex. , 2008, Human molecular genetics.

[40]  A. Brehm,et al.  Mass production of Drosophila embryos and chromatographic purification of native protein complexes. , 2008, Methods in molecular biology.

[41]  L. Bullinger,et al.  Early hematopoietic zinc finger protein-zinc finger protein 521: a candidate regulator of diverse immature cells. , 2008, The international journal of biochemistry & cell biology.

[42]  K. Rippe,et al.  DNA sequence- and conformation-directed positioning of nucleosomes by chromatin-remodeling complexes , 2007, Proceedings of the National Academy of Sciences.

[43]  R. Maeda,et al.  An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases , 2007, Proceedings of the National Academy of Sciences.

[44]  T. Magnuson,et al.  A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in beta-globin expression and erythroid development. , 2005, Genes & development.

[45]  Andrzej Semczuk,et al.  TGF-β signaling is disrupted in endometrioid-type endometrial carcinomas , 2004 .

[46]  Claudia B. Zraly,et al.  SNR1 (INI1/SNF5) Mediates Important Cell Growth Functions of the Drosophila Brahma (SWI/SNF) Chromatin Remodeling Complex , 2004, Genetics.

[47]  J. B. Duffy,et al.  GAL4 system in drosophila: A fly geneticist's swiss army knife , 2002, Genesis.

[48]  G. Längst,et al.  The dMi‐2 chromodomains are DNA binding modules important for ATP‐dependent nucleosome mobilization , 2002, The EMBO journal.

[49]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[50]  G. Längst,et al.  dMi‐2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties , 2000, The EMBO journal.

[51]  G. Felsenfeld,et al.  A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. , 1979, Nucleic acids research.