Lessons Learned: From Dye‐Sensitized Solar Cells to All‐Solid‐State Hybrid Devices

The field of solution-processed photovoltaic cells is currently in its second spring. The dye-sensitized solar cell is a widely studied and longstanding candidate for future energy generation. Recently, inorganic absorber-based devices have reached new record efficiencies, with the benefits of all-solid-state devices. In this rapidly changing environment, this review sheds light on recent developments in all-solid-state solar cells in terms of electrode architecture, alternative sensitizers, and hole-transporting materials. These concepts are of general applicability to many next-generation device platforms.

[1]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[2]  A. J. Frank,et al.  Impact of High Charge-Collection Efficiencies and Dark Energy-Loss Processes on Transport, Recombination, and Photovoltaic Properties of Dye-Sensitized Solar Cells , 2011 .

[3]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[4]  E. Aydil,et al.  Oriented single crystalline titanium dioxide nanowires , 2008, Nanotechnology.

[5]  G. Boschloo,et al.  Initial light soaking treatment enables hole transport material to outperform spiro-OMeTAD in solid-state dye-sensitized solar cells. , 2013, Journal of the American Chemical Society.

[6]  Wolfgang Kowalsky,et al.  Al2O3/ZrO2 Nanolaminates as Ultrahigh Gas‐Diffusion Barriers—A Strategy for Reliable Encapsulation of Organic Electronics , 2009 .

[7]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2009 .

[8]  N. Robertson,et al.  Diacetylene bridged triphenylamines as hole transport materials for solid state dye sensitized solar cells , 2013 .

[9]  Jingshan Luo,et al.  A Novel Photoanode with Three‐Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells , 2012, Advanced materials.

[10]  Lukas Schmidt-Mende,et al.  Nanostructured Organic and Hybrid Solar Cells , 2011, Advanced materials.

[11]  I. Kaiser,et al.  The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta) , 2001 .

[12]  K. Cao,et al.  Alternate redox electrolytes in dye-sensitized solar cells , 2012 .

[13]  Laurence M. Peter,et al.  Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells: Characterization by Intensity-Modulated Photocurrent Spectroscopy , 1997 .

[14]  Andreas F. Meyer,et al.  Long‐term stability of dye‐sensitised solar cells , 2001 .

[15]  Michael Grätzel,et al.  TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells , 2006 .

[16]  Qing Wang,et al.  Characteristics of high efficiency dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[17]  C E Bottani,et al.  Hierarchically organized nanostructured TiO2 for photocatalysis applications. , 2009, Nanotechnology.

[18]  Bin Liu,et al.  Highly Efficient Nanoporous TiO2‐Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal‐Free Organic Dye , 2009 .

[19]  Prashant V. Kamat,et al.  Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization , 1999 .

[20]  Anders Hagfeldt,et al.  A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes , 2002 .

[21]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[22]  G. Dennler,et al.  Unexpected Performances of Flat Sb2S3-Based Hybrid Extremely Thin Absorber Solar Cells , 2013 .

[23]  Ashraful Islam,et al.  Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1% , 2006 .

[24]  N. Oreskes The Scientific Consensus on Climate Change , 2004, Science.

[25]  Henry J. Snaith,et al.  The renaissance of dye-sensitized solar cells , 2012, Nature Photonics.

[26]  Brian A. Gregg,et al.  Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces , 2001 .

[27]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[28]  N. Park,et al.  Low-temperature oxygen plasma treatment of TiO2 film for enhanced performance of dye-sensitized solar cells , 2008 .

[29]  P. Liska,et al.  Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. , 1999, Inorganic chemistry.

[30]  S. Beaupré,et al.  High Efficiency Polymer Solar Cells with Long Operating Lifetimes , 2011 .

[31]  Bradley F. Chmelka,et al.  Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks , 1998, Nature.

[32]  H. Snaith,et al.  Charge Transport Limitations in Self-Assembled TiO2 Photoanodes for Dye-Sensitized Solar Cells. , 2013, The journal of physical chemistry letters.

[33]  Horst Weller,et al.  Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors , 1994 .

[34]  M. Grätzel Dye-sensitized solar cells , 2003 .

[35]  H. Tributsch,et al.  Mechanisms of Instability in Ru-Based Dye Sensitization Solar Cells , 1997 .

[36]  Juan Bisquert,et al.  Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. , 2009, Journal of the American Chemical Society.

[37]  Michael Grätzel,et al.  The advent of mesoscopic injection solar cells , 2006 .

[38]  Michael Grätzel,et al.  Novel nanostructures for next generation dye-sensitized solar cells , 2012 .

[39]  Peng Wang,et al.  High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. , 2008, Nature materials.

[40]  Jun-Ho Yum,et al.  Panchromatic engineering for dye-sensitized solar cells , 2011 .

[41]  Michael Grätzel,et al.  Electron and Hole Transport through Mesoporous TiO2 Infiltrated with Spiro‐MeOTAD , 2007 .

[42]  Henry J. Snaith,et al.  How should you measure your excitonic solar cells , 2012 .

[43]  Michael Grätzel,et al.  Dye-Sensitized Core−Shell Nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide , 2002 .

[44]  Juan Bisquert,et al.  Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy , 2005 .

[45]  A. Mihi,et al.  Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells. , 2005, The journal of physical chemistry. B.

[46]  W. Jaegermann,et al.  Synchrotron-Induced Photoelectron Spectroscopy of the Dye-Sensitized Nanocrystalline TiO2/Electrolyte Interface: Band Gap States and Their Interaction with Dye and Solvent Molecules , 2007 .

[47]  Michael Grätzel,et al.  Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy , 2003 .

[48]  M. Welland,et al.  The influence of 1D, meso- and crystal structures on charge transport and recombination in solid-state dye-sensitized solar cells† , 2013 .

[49]  J. Nelson,et al.  Defect chemistry, surface structures, and lithium insertion in anatase TiO2. , 2006, The journal of physical chemistry. B.

[50]  J. Teuscher,et al.  Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[51]  K. Ho,et al.  Solid-state dye-sensitized solar cells based on spirofluorene (spiro-OMeTAD) and arylamines as hole transporting materials. , 2012, Physical chemistry chemical physics : PCCP.

[52]  Juan Bisquert,et al.  Breakthroughs in the Development of Semiconductor-Sensitized Solar Cells , 2010 .

[53]  Fumin Wang,et al.  Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. , 2004, Journal of the American Chemical Society.

[54]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[55]  Michael Grätzel,et al.  Perspectives for dye‐sensitized nanocrystalline solar cells , 2000 .

[56]  M. Weitzman,et al.  Stern Review : The Economics of Climate Change , 2006 .

[57]  C. M. Elliott,et al.  Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. , 2002, Journal of the American Chemical Society.

[58]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[59]  Sang Jin Kim,et al.  High Efficiency Solid‐State Dye‐Sensitized Solar Cells Assembled with Hierarchical Anatase Pine Tree‐like TiO2 Nanotubes , 2014 .

[60]  A. J. Frank,et al.  Effects of Annealing Temperature on the Charge-Collection and Light-Harvesting Properties of TiO2 Nanotube-Based Dye-Sensitized Solar Cells , 2010 .

[61]  Valery Shklover,et al.  Self-Organization of TiO2 Nanoparticles in Thin Films , 1998 .

[62]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[63]  J. Durrant,et al.  Parameters Influencing Charge Separation in Solid‐State Dye‐Sensitized Solar Cells Using Novel Hole Conductors , 2006 .

[64]  H. Snaith,et al.  Block copolymer morphologies in dye-sensitized solar cells: probing the photovoltaic structure-function relation. , 2009, Nano letters.

[65]  Hongxing Yang,et al.  Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems , 2013 .

[66]  R. Friend,et al.  Dye-sensitized solar cell based on a three-dimensional photonic crystal. , 2010, Nano letters.

[67]  Yuji Wada,et al.  Solid State Dye-Sensitized TiO2 Solar Cell with Polypyrrole as Hole Transport Layer , 1997 .

[68]  Anders Hagfeldt,et al.  Dye regeneration by spiro-MeOTAD in solid state dye-sensitized solar cells studied by photoinduced absorption spectroscopy and spectroelectrochemistry. , 2009 .

[69]  H. Snaith,et al.  SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. , 2010, Nano letters.

[70]  Arnaud Magrez,et al.  High-efficiency solid-state dye-sensitized solar cells: fast charge extraction through self-assembled 3D fibrous network of crystalline TiO2 nanowires. , 2010, ACS nano.

[71]  D. Cahen,et al.  Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells , 2006 .

[72]  Brett A. Kamino,et al.  Siliconized triarylamines as redox mediator in dye-sensitized solar cells. , 2012, ACS applied materials & interfaces.

[73]  Jun-Ho Yum,et al.  Recent developments in solid-state dye-sensitized solar cells. , 2008, ChemSusChem.

[74]  Monica Lira-Cantu,et al.  Influence of doped anions on poly(3,4-ethylenedioxythiophene) as hole conductors for iodine-free solid-state dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[75]  Sarmimala Hore,et al.  How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells? , 2005, The journal of physical chemistry. B.

[76]  G. Lanzani,et al.  Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells , 2012 .

[77]  A. Zaban,et al.  Core/CdS Quantum Dot/Shell Mesoporous Solar Cells with Improved Stability and Efficiency Using an Amorphous TiO2 Coating , 2009 .

[78]  Kurt D. Benkstein,et al.  Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells , 2003 .

[79]  Eiji Suzuki,et al.  Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion length , 2007 .

[80]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[81]  A. J. Frank,et al.  Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2003 .

[82]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[83]  Hyung Chul Kim,et al.  Photovoltaics: Life-cycle Analyses , 2011 .

[84]  Hidetoshi Miura,et al.  Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes. , 2008, Journal of the American Chemical Society.

[85]  David Emin,et al.  High mobility n‐type charge carriers in large single crystals of anatase (TiO2) , 1994 .

[86]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[87]  Jing Sun,et al.  Forest-like TiO2 hierarchical structures for efficient dye-sensitized solar cells , 2012 .

[88]  Chenghua Sun,et al.  4-tert-Butyl Pyridine Bond Site and Band Bending on TiO2(110) , 2010 .

[89]  G. Ozin,et al.  High-efficiency dye-sensitized solar cell with three-dimensional photoanode. , 2011, Nano letters.

[90]  Guillermo Munuera,et al.  Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 1.—Role of hydroxyl groups in photo-adsorption , 1979 .

[91]  M. Paoli,et al.  Polymers in dye sensitized solar cells: overview and perspectives , 2004 .

[92]  Seigo Ito,et al.  Control of dark current in photoelectrochemical (TiO2/I--I3-)) and dye-sensitized solar cells. , 2005, Chemical communications.

[93]  Leone Spiccia,et al.  High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. , 2011, Nature chemistry.

[94]  G. Boschloo,et al.  Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. , 2010, Journal of the American Chemical Society.

[95]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[96]  B. Liu,et al.  High-Performance Solid-State Organic Dye Sensitized Solar Cells with P3HT as Hole Transporter , 2011 .

[97]  Hyung Chul Kim,et al.  Emissions from photovoltaic life cycles. , 2008, Environmental science & technology.

[98]  Prashant V. Kamat,et al.  Charge-transfer processes in coupled semiconductor systems. Photochemistry and photoelectrochemistry of the colloidal cadmium sulfide-zinc oxide system , 1992 .

[99]  Mingfei Xu,et al.  Efficient and stable solid-state dye-sensitized solar cells based on a high-molar-extinction-coefficient sensitizer. , 2010, Small.

[100]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[101]  Yuji Wada,et al.  Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells. , 2005, Journal of the American Chemical Society.

[102]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[103]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[104]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[105]  Michael D. McGehee,et al.  Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells , 2007 .

[106]  Jenny Nelson,et al.  Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound , 2003 .

[107]  S. Zakeeruddin,et al.  CoII(dbbip)22+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells , 2001 .

[108]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[109]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[110]  G. Fredrickson,et al.  Block Copolymers—Designer Soft Materials , 1999 .

[111]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[112]  P. M. Sommeling,et al.  Long-term stability testing of dye-sensitized solar cells , 2004 .

[113]  N. Stern The Economics of Climate Change: Implications of Climate Change for Development , 2007 .

[114]  S. Namba,et al.  Color Sensitization of Zinc Oxide with Cyanine Dyes1 , 1965 .

[115]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[116]  Andrew G. Glen,et al.  APPL , 2001 .

[117]  Alex K.-Y. Jen,et al.  High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. , 2013, Nano letters.

[118]  Choong-Sun Lim,et al.  Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. , 2012, Nano letters.

[119]  Michael Grätzel,et al.  The Effect of Hole Transport Material Pore Filling on Photovoltaic Performance in Solid‐State Dye‐Sensitized Solar Cells , 2011 .

[120]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[121]  Juan Bisquert,et al.  Chemical diffusion coefficient of electrons in nanostructured semiconductor electrodes and dye-sensitized solar cells , 2004 .

[122]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[123]  U. Bach,et al.  Stable dye-sensitized solar cell electrolytes based on cobalt(II)/(III) complexes of a hexadentate pyridyl ligand. , 2013, Angewandte Chemie.

[124]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[125]  F. Di Fonzo,et al.  Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells. , 2013, ACS nano.

[126]  Frederik C. Krebs,et al.  Significant Improvement of Polymer Solar Cell Stability , 2005 .

[127]  H. Snaith,et al.  Enhanced electronic contacts in SnO2-dye-P3HT based solid state dye sensitized solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[128]  Assaf Y Anderson,et al.  Re-evaluation of recombination losses in dye-sensitized cells: the failure of dynamic relaxation methods to correctly predict diffusion length in nanoporous photoelectrodes. , 2009, Nano letters.

[129]  N. Yufa,et al.  Triblock‐Terpolymer‐Directed Self‐Assembly of Mesoporous TiO2: High‐Performance Photoanodes for Solid‐State Dye‐Sensitized Solar Cells , 2012 .

[130]  Craig A Grimes,et al.  Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. , 2009, Nature nanotechnology.

[131]  D. C. Cronemeyer Infrared Absorption of Reduced Rutile Ti O 2 Single Crystals , 1959 .

[132]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[133]  H. Snaith,et al.  Pore Filling of Spiro‐OMeTAD in Solid‐State Dye‐Sensitized Solar Cells Determined Via Optical Reflectometry , 2012 .

[134]  Peter Lund,et al.  Review of materials and manufacturing options for large area flexible dye solar cells , 2011 .

[135]  Guozhong Cao,et al.  Nanostructured photoelectrodes for dye-sensitized solar cells , 2011 .

[136]  Carl Hägglund,et al.  Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons , 2008 .

[137]  J. Hupp,et al.  Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[138]  A. J. Frank,et al.  Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties , 2004 .

[139]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[140]  F. Fabregat‐Santiago,et al.  Recombination in quantum dot sensitized solar cells. , 2009, Accounts of chemical research.

[141]  J. Moon,et al.  Hierarchically Porous TiO2 Electrodes Fabricated by Dual Templating Methods for Dye‐Sensitized Solar Cells , 2011, Advanced materials.

[142]  Hidetoshi Miura,et al.  Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells , 2005 .

[143]  Marco Piccirelli,et al.  High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination , 2001 .

[144]  Anders Hagfeldt,et al.  Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. , 2009, Accounts of chemical research.

[145]  Mietek Jaroniec,et al.  Anatase TiO2 with Dominant High-Energy {001} Facets: Synthesis, Properties, and Applications , 2011 .

[146]  Jenny Nelson,et al.  Electron Dynamics in Nanocrystalline ZnO and TiO2 Films Probed by Potential Step Chronoamperometry and Transient Absorption Spectroscopy , 2002 .

[147]  J. Teuscher,et al.  Optimizing the Energy Offset between Dye and Hole-Transporting Material in Solid-State Dye-Sensitized Solar Cells , 2013 .

[148]  Hironori Arakawa,et al.  Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6% , 2010 .

[149]  Alice Bows,et al.  Beyond ‘dangerous’ climate change: emission scenarios for a new world , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[150]  Anders Hagfeldt,et al.  Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. , 2006, The journal of physical chemistry. B.

[151]  A. J. Frank,et al.  Temporal Evolution of the Electron Diffusion Coefficient in Electrolyte-Filled Mesoporous Nanocrystalline TiO2 Films , 2008 .

[152]  Kisuk Kang,et al.  Application of transparent dye-sensitized solar cells to building integrated photovoltaic systems , 2011 .

[153]  A. Salleo,et al.  The Mechanism of Burn‐in Loss in a High Efficiency Polymer Solar Cell , 2012, Advanced materials.

[154]  Michael Grätzel,et al.  An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. , 2010, Nature chemistry.

[155]  K. Yoon,et al.  An 8.2% efficient solution-processed CuInSe2 solar cell based on multiphase CuInSe2 nanoparticles , 2012 .

[156]  G. Dennler,et al.  On Charge Carrier Recombination in Sb2S3 and Its Implication for the Performance of Solar Cells , 2013 .

[157]  Michael Grätzel,et al.  Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: influence of lithium ions on the photovoltaic performance of liquid and solid-state cells. , 2006, Nano letters.

[158]  L. Peter,et al.  Dye-sensitized nanocrystalline solar cells. , 2007, Physical chemistry chemical physics : PCCP.

[159]  Juan Bisquert,et al.  A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors , 2008 .

[160]  Anders Hagfeldt,et al.  Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[161]  Jia-Hung Tsai,et al.  Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. , 2009, ACS nano.

[162]  Hironori Arakawa,et al.  Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell , 2004 .

[163]  Nelson Rc MINORITY CARRIER TRAPPING AND DYE SENSITIZATION. , 1965 .

[164]  B. Liu,et al.  Solid‐State Dye‐Sensitized Solar Cells with Conjugated Polymers as Hole‐Transporting Materials , 2011 .

[165]  Jillian F. Banfield,et al.  Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania , 1999 .

[166]  Andreas Georg,et al.  Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells , 2001 .

[167]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[168]  J. Moser Notiz über Verstärkung photoelektrischer Ströme durch optische Sensibilisirung , 1887 .

[169]  Hideaki Araki,et al.  Development of CZTS-based thin film solar cells , 2009 .

[170]  J. Durrant,et al.  Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. , 2009, Accounts of chemical research.

[171]  Jani Kallioinen,et al.  Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. , 2002, Journal of the American Chemical Society.

[172]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[173]  Eunkyoung Kim,et al.  Enhanced Performance of I2‐Free Solid‐State Dye‐Sensitized Solar Cells with Conductive Polymer up to 6.8% , 2011 .

[174]  Q. Shen,et al.  High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells , 2007 .

[175]  K. Hauffe,et al.  New Experiments on the Sensitization of Zinc Oxide by Means of the Electrochemical Cell Technique , 1970 .

[176]  H. Tributsch,et al.  Dye sensitization solar cells: a critical assessment of the learning curve , 2004 .

[177]  Th. Dittrich,et al.  Electron Drift Mobility in Porous TiO2 (Anatase) , 1998 .

[178]  A. Hagfeldt,et al.  Organic redox couples and organic counter electrode for efficient organic dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[179]  Horst Weller,et al.  Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS , 1990 .

[180]  H. Snaith,et al.  Obviating the requirement for oxygen in SnO2-based solid-state dye-sensitized solar cells , 2011, Nanotechnology.

[181]  E. Alsema Energy pay‐back time and CO2 emissions of PV systems , 2000 .

[182]  Giorgio Sberveglieri,et al.  Hierarchically assembled ZnO nanocrystallites for high-efficiency dye-sensitized solar cells. , 2011, Angewandte Chemie.

[183]  I-Kang Ding,et al.  Parasitic Absorption and Internal Quantum Efficiency Measurements of Solid‐State Dye Sensitized Solar Cells , 2013 .

[184]  Takurou N. Murakami,et al.  The 2,2,6,6‐Tetramethyl‐1‐piperidinyloxy Radical: An Efficient, Iodine‐ Free Redox Mediator for Dye‐Sensitized Solar Cells , 2008 .

[185]  J. Yates,et al.  THE ADSORPTION AND PHOTODESORPTION OF OXYGEN ON THE TIO2(110) SURFACE , 1995 .

[186]  Henry J. Snaith,et al.  Facile infiltration of semiconducting polymer into mesoporous electrodes for hybrid solar cells , 2011 .

[187]  Michael Grätzel,et al.  Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films , 1996 .

[188]  Tsutomu Miyasaka,et al.  Toward Printable Sensitized Mesoscopic Solar Cells: Light-Harvesting Management with Thin TiO2 Films , 2011 .

[189]  Ulrich Wiesner,et al.  Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. , 2011, Nano letters.

[190]  M. Grätzel,et al.  Electronic and Optical Properties of the Spiro-MeOTAD Hole Conductor in Its Neutral and Oxidized Forms: A DFT/TDDFT Investigation , 2011 .

[191]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[192]  J. Hupp,et al.  Radial electron collection in dye-sensitized solar cells. , 2008, Nano letters.

[193]  A. Meyer,et al.  The photovoltaic stability of, bis(isothiocyanato)rlutheniurn(II)‐bis‐2, 2′bipyridine‐4, 4′‐dicarboxylic acid and related sensitizers , 1997 .

[194]  Mohammad Khaja Nazeeruddin,et al.  Co(III) Complexes as p-Dopants in Solid-State Dye-Sensitized Solar Cells , 2013 .

[195]  Y. Wada,et al.  Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole , 1998 .

[196]  Mohammad Khaja Nazeeruddin,et al.  Subnanometer Ga2O3 tunnelling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells. , 2012, Nano letters.

[197]  Chiara Bertarelli,et al.  The effect of selective interactions at the interface of polymer–oxide hybrid solar cells , 2012 .

[198]  Hong-Yan Chen,et al.  Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells , 2012 .

[199]  Henry J. Snaith,et al.  Estimating the Maximum Attainable Efficiency in Dye‐Sensitized Solar Cells , 2010 .

[200]  Henry J. Snaith,et al.  Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance , 2013, Nature.

[201]  Tomas Edvinsson,et al.  Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells: Studies of Charge Transport and Carrier Lifetime , 2007 .

[202]  Qiang Luo,et al.  Recent advances in alternative cathode materials for iodine-free dye-sensitized solar cells , 2013 .

[203]  A. J. Frank,et al.  Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Electrical Impedance and Optical Modulation Techniques , 2000 .

[204]  W. Maier,et al.  An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media , 1997 .

[205]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[206]  I. Lauermann,et al.  Influence of oxygen and water related surface defects on the dye sensitized TiO2 solar cell , 1999 .

[207]  Md. K. Nazeeruddin,et al.  High-performance nanostructured inorganic-organic heterojunction solar cells. , 2010, Nano letters.

[208]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[209]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[210]  Peng Wang,et al.  High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states. , 2010, ACS nano.

[211]  W. Jaegermann,et al.  Photoelectron Spectroscopy at the Solid–Liquid Interface of Dye–Sensitized Solar Cells: Unique Experiments with the Solid–Liquid Interface Analysis System SoLiAS at BESSY , 2007 .

[212]  H. Snaith,et al.  Layer-by-layer formation of block-copolymer-derived TiO(2) for solid-state dye-sensitized solar cells. , 2012, Small.

[213]  M. Grätzel,et al.  Dye-sensitized solar cells incorporating a "liquid" hole-transporting material. , 2006, Nano letters.

[214]  David R. Klug,et al.  Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films , 2000 .

[215]  T. Murakami,et al.  Unraveling the Function of an MgO Interlayer in Both Electrolyte and Solid-State SnO2 Based Dye-Sensitized Solar Cells , 2012 .

[216]  Thomas W. Hamann,et al.  Recombination and redox couples in dye-sensitized solar cells , 2013 .

[217]  Priti Tiwana,et al.  Electron mobility and injection dynamics in mesoporous ZnO, SnO₂, and TiO₂ films used in dye-sensitized solar cells. , 2011, ACS nano.

[218]  Peng Wang,et al.  High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. , 2011, Chemical communications.

[219]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[220]  Gary Hodes,et al.  Comparison of Dye-and Semiconductor-Sensitized Porous Nanocrystalline Liquid Junction Solar Cells , 2008 .

[221]  Michael Grätzel,et al.  Charge collection and pore filling in solid-state dye-sensitized solar cells , 2008, Nanotechnology.

[222]  Di Gao,et al.  High-efficiency solid-state dye-sensitized solar cells based on TiO(2)-coated ZnO nanowire arrays. , 2012, Nano letters.

[223]  Silvia Colodrero,et al.  Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications , 2011 .

[224]  Udo Bach,et al.  Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance. , 2012, Nano letters.

[225]  U. Wiesner,et al.  Improved conductivity in dye-sensitised solar cells through block-copolymer confined TiO2 crystallisation , 2011 .

[226]  G. Vitiello,et al.  Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells. , 2013, Journal of the American Chemical Society.

[227]  C. Peden,et al.  Interaction of Molecular Oxygen with the Vacuum-Annealed TiO2(110) Surface: Molecular and Dissociative Channels , 1999 .

[228]  Garry Rumbles,et al.  Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices , 2008 .

[229]  U. Wiesner,et al.  A bicontinuous double gyroid hybrid solar cell. , 2009, Nano letters.

[230]  Michael Grätzel,et al.  Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. , 2009, Nano letters.

[231]  Stefan Guldin,et al.  Inorganic Nanoarchitectures by Organic Self-Assembly , 2013 .

[232]  Mikkel Jørgensen,et al.  Upscaling of polymer solar cell fabrication using full roll-to-roll processing. , 2010, Nanoscale.

[233]  S. Haque,et al.  Electron and hole transfer at metal oxide/Sb2S3/spiro-OMeTAD heterojunctions , 2012 .

[234]  M. Johnston,et al.  Ultrafast terahertz conductivity dynamics in mesoporous TiO2: Influence of dye sensitization and surface treatment in solid-state dye-sensitized solar cells , 2010 .

[235]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[236]  Guozhong Cao,et al.  Applications of light scattering in dye-sensitized solar cells. , 2012, Physical chemistry chemical physics : PCCP.

[237]  Michael Grätzel,et al.  Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells , 2006 .

[238]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[239]  Henry J. Snaith,et al.  Advances in Liquid‐Electrolyte and Solid‐State Dye‐Sensitized Solar Cells , 2007 .

[240]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[241]  F. Di Fonzo,et al.  Hierarchical TiO2 photoanode for dye-sensitized solar cells. , 2010, Nano letters.

[242]  Aram Amassian,et al.  Hybrid passivated colloidal quantum dot solids. , 2012, Nature nanotechnology.

[243]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[244]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[245]  Peng Wang,et al.  A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells , 2003 .

[246]  T. Bendikov,et al.  Uniform Coating of Light-Absorbing Semiconductors by Chemical Bath Deposition on Sulfide-Treated ZnO Nanorods , 2010 .

[247]  Shozo Yanagida,et al.  Iodine/iodide-free dye-sensitized solar cells. , 2009, Accounts of chemical research.

[248]  Joop Schoonman,et al.  Solar‐Energy Conversion in TiO2/CuInS2 Nanocomposites , 2005 .

[249]  Udo Bach,et al.  Quantum dot sensitization of organic-inorganic hybrid solar cells , 2002 .

[250]  H. Pettersson,et al.  Nanocrystalline dye‐sensitized solar cells having maximum performance , 2007 .

[251]  Taiho Park,et al.  Charge Density Dependent Mobility of Organic Hole‐Transporters and Mesoporous TiO2 Determined by Transient Mobility Spectroscopy: Implications to Dye‐Sensitized and Organic Solar Cells , 2013, Advanced materials.

[252]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[253]  Michael Grätzel,et al.  Pore‐Filling of Spiro‐OMeTAD in Solid‐State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance , 2009 .

[254]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[255]  Saif A. Haque,et al.  Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films under Externally Applied Bias , 1998 .

[256]  J. Bloking,et al.  Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. , 2012, ACS nano.

[257]  Michael S Strano,et al.  Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. , 2011, Nature nanotechnology.

[258]  S. Ramakrishna,et al.  An Efficient Organic‐Dye‐Sensitized Solar Cell with in situ Polymerized Poly(3,4‐ethylenedioxythiophene) as a Hole‐Transporting Material , 2010, Advanced materials.

[259]  Arthur J. Nozik,et al.  Photosensitization of nanoporous TiO2 electrodes with InP quantum dots , 1998 .

[260]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[261]  Juan Bisquert,et al.  Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.