Multiplicative structures of the immaculate basis of non-commutative symmetric functions
暂无分享,去创建一个
[1] T. Tao,et al. The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .
[2] Frank Sottile,et al. Skew Schubert functions and the Pieri formula for flag manifolds , 2001 .
[3] A. Garsia,et al. Sergeev's formula and the littlewood—richardson rule , 1990 .
[4] A. V. Zelevinsky,et al. Representations of Finite Classical Groups: A Hopf Algebra Approach , 1981 .
[5] Igor Pak,et al. Combinatorics and geometry of Littlewood-Richardson cones , 2005, Eur. J. Comb..
[6] Mike Zabrocki,et al. A Lift of the Schur and Hall–Littlewood Bases to Non-commutative Symmetric Functions , 2014, Canadian Journal of Mathematics.
[7] Daniel Krob,et al. Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à q = 0 , 1996 .
[8] Bruce E. Sagan,et al. The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.
[9] Sarah Mason,et al. Quasisymmetric Schur functions , 2011, J. Comb. Theory, Ser. A.
[10] Jeffrey B. Remmel,et al. A simple proof of the Littlewood-Richardson rule and applications , 1998, Discret. Math..
[11] Structure Constants for Immaculate Functions , 2015, 1503.02285.
[12] Andrei Zelevinsky,et al. Tensor product multiplicities and convex polytopes in partition space , 1988 .
[13] Daniel Krob,et al. Noncommutative Symmetric Functions Iv: Quantum Linear Groups and Hecke Algebras at q = 0 , 1997 .
[14] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[15] J. Thibon. Lectures on noncommutative symmetric functions , 2001 .
[16] Israel M. Gelfand,et al. Noncommutative Symmetrical Functions , 1995 .
[17] Terence Tao,et al. The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture , 1998, math/9807160.
[18] Mike Zabrocki,et al. Hall–Littlewood Vertex Operators and Generalized Kostka Polynomials☆ , 2000 .
[19] Pavel Shuldiner,et al. A Schur-Like Basis of NSym Defined by a Pieri Rule , 2014, Electron. J. Comb..
[20] Mike Zabrocki,et al. Indecomposable modules for the dual immaculate basis of quasi-symmetric functions , 2013, 1304.1224.
[22] Sarah Mason,et al. Refinements of the Littlewood-Richardson rule , 2009, 0908.3540.
[23] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[24] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.