Multiplicative structures of the immaculate basis of non-commutative symmetric functions

Abstract We continue our development of a new basis for the algebra of non-commutative symmetric functions. This basis is analogous to the basis of Schur functions for the algebra of symmetric functions, and it shares many of its wonderful properties. For instance, in this article we describe non-commutative versions of the Littlewood–Richardson rule and the Murnaghan–Nakayama rule. A surprising relation develops among non-commutative Littlewood–Richardson coefficients, which has implications to the commutative case. Finally, we interpret these new coefficients geometrically as the number of integer points inside a certain polytope.

[1]  T. Tao,et al.  The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .

[2]  Frank Sottile,et al.  Skew Schubert functions and the Pieri formula for flag manifolds , 2001 .

[3]  A. Garsia,et al.  Sergeev's formula and the littlewood—richardson rule , 1990 .

[4]  A. V. Zelevinsky,et al.  Representations of Finite Classical Groups: A Hopf Algebra Approach , 1981 .

[5]  Igor Pak,et al.  Combinatorics and geometry of Littlewood-Richardson cones , 2005, Eur. J. Comb..

[6]  Mike Zabrocki,et al.  A Lift of the Schur and Hall–Littlewood Bases to Non-commutative Symmetric Functions , 2014, Canadian Journal of Mathematics.

[7]  Daniel Krob,et al.  Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à q = 0 , 1996 .

[8]  Bruce E. Sagan,et al.  The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.

[9]  Sarah Mason,et al.  Quasisymmetric Schur functions , 2011, J. Comb. Theory, Ser. A.

[10]  Jeffrey B. Remmel,et al.  A simple proof of the Littlewood-Richardson rule and applications , 1998, Discret. Math..

[11]  Structure Constants for Immaculate Functions , 2015, 1503.02285.

[12]  Andrei Zelevinsky,et al.  Tensor product multiplicities and convex polytopes in partition space , 1988 .

[13]  Daniel Krob,et al.  Noncommutative Symmetric Functions Iv: Quantum Linear Groups and Hecke Algebras at q = 0 , 1997 .

[14]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[15]  J. Thibon Lectures on noncommutative symmetric functions , 2001 .

[16]  Israel M. Gelfand,et al.  Noncommutative Symmetrical Functions , 1995 .

[17]  Terence Tao,et al.  The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture , 1998, math/9807160.

[18]  Mike Zabrocki,et al.  Hall–Littlewood Vertex Operators and Generalized Kostka Polynomials☆ , 2000 .

[19]  Pavel Shuldiner,et al.  A Schur-Like Basis of NSym Defined by a Pieri Rule , 2014, Electron. J. Comb..

[20]  Mike Zabrocki,et al.  Indecomposable modules for the dual immaculate basis of quasi-symmetric functions , 2013, 1304.1224.

[22]  Sarah Mason,et al.  Refinements of the Littlewood-Richardson rule , 2009, 0908.3540.

[23]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[24]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.