ISCAS_NLP at SemEval-2016 Task 1: Sentence Similarity Based on Support Vector Regression using Multiple Features
暂无分享,去创建一个
Bo An | Xianpei Han | Cheng Fu | Le Sun
[1] Lushan Han,et al. Samsung: Align-and-Differentiate Approach to Semantic Textual Similarity , 2015, SemEval@NAACL-HLT.
[2] Deborah Caine,et al. Back to the Basics , 2021, Interceram - International Ceramic Review.
[3] Steven Bethard,et al. DLS@CU: Sentence Similarity from Word Alignment , 2014, *SEMEVAL.
[4] Georgiana Dinu,et al. Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors , 2014, ACL.
[5] Chris Callison-Burch,et al. PPDB: The Paraphrase Database , 2013, NAACL.
[6] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[7] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[8] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[9] Zellig S. Harris,et al. Distributional Structure , 1954 .
[10] Mihai Surdeanu,et al. The Stanford CoreNLP Natural Language Processing Toolkit , 2014, ACL.
[11] Steven Bethard,et al. DLS@CU: Sentence Similarity from Word Alignment and Semantic Vector Composition , 2015, *SEMEVAL.
[12] Steven Bethard,et al. Back to Basics for Monolingual Alignment: Exploiting Word Similarity and Contextual Evidence , 2014, TACL.
[13] Iryna Gurevych,et al. UKP: Computing Semantic Textual Similarity by Combining Multiple Content Similarity Measures , 2012, *SEMEVAL.
[14] Christian Hänig,et al. ExB Themis: Extensive Feature Extraction from Word Alignments for Semantic Textual Similarity , 2015, *SEMEVAL.