To step or not to step? How biochemistry and mechanics influence processivity in Kinesin and Eg5.

[1]  Michael P. Sheetz,et al.  Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility , 1985, Cell.

[2]  D. Hackney,et al.  Kinesin ATPase: rate-limiting ADP release. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Hudspeth,et al.  Movement of microtubules by single kinesin molecules , 1989, Nature.

[4]  L. Goldstein,et al.  Bead movement by single kinesin molecules studied with optical tweezers , 1990, Nature.

[5]  K. Svoboda,et al.  Fluctuation analysis of motor protein movement and single enzyme kinetics. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[6]  D. Hackney,et al.  Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[7]  K. Johnson,et al.  Pre-steady-state kinetics of the microtubule-kinesin ATPase. , 1994, Biochemistry.

[8]  K. Johnson,et al.  Purification and characterization of two monomeric kinesin constructs. , 1996, Biochemistry.

[9]  J. Gelles,et al.  Coupling of kinesin steps to ATP hydrolysis , 1997, Nature.

[10]  Mark J. Schnitzer,et al.  Kinesin hydrolyses one ATP per 8-nm step , 1997, Nature.

[11]  E. Taylor,et al.  Kinetic Mechanism of a Monomeric Kinesin Construct* , 1997, The Journal of Biological Chemistry.

[12]  E. Taylor,et al.  Interacting Head Mechanism of Microtubule-Kinesin ATPase* , 1997, The Journal of Biological Chemistry.

[13]  K. Johnson,et al.  Alternating site mechanism of the kinesin ATPase. , 1998, Biochemistry.

[14]  T. Mitchison,et al.  The Bipolar Kinesin, KLP61F, Cross-links Microtubules within Interpolar Microtubule Bundles of Drosophila Embryonic Mitotic Spindles , 1999, The Journal of cell biology.

[15]  Roger Cooke,et al.  A structural change in the kinesin motor protein that drives motility , 1999, Nature.

[16]  R. Cross,et al.  Coupled chemical and mechanical reaction steps in a processive Neurospora kinesin , 1999, The EMBO journal.

[17]  J. Howard,et al.  Kinesin's processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Yixian Zheng,et al.  Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities , 2001, Nature Cell Biology.

[19]  S. Rosenfeld,et al.  ATP Reorients the Neck Linker of Kinesin in Two Sequential Steps* , 2001, The Journal of Biological Chemistry.

[20]  J Guo,et al.  Crystal Structure of the Mitotic Spindle Kinesin Eg5 Reveals a Novel Conformation of the Neck-linker* , 2001, The Journal of Biological Chemistry.

[21]  S. Rosenfeld,et al.  Measuring Kinesin's First Step* , 2002, The Journal of Biological Chemistry.

[22]  Shin'ichi Ishiwata,et al.  Kinesin–microtubule binding depends on both nucleotide state and loading direction , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Hoenger,et al.  Motor domain mutation traps kinesin as a microtubule rigor complex. , 2003, Biochemistry.

[24]  Hideo Higuchi,et al.  Alternate fast and slow stepping of a heterodimeric kinesin molecule , 2003, Nature Cell Biology.

[25]  Polly M. Fordyce,et al.  Stepping and Stretching , 2003, The Journal of Biological Chemistry.

[26]  Hernando Sosa,et al.  Configuration of the two kinesin motor domains during ATP hydrolysis , 2003, Nature Structural Biology.

[27]  E. Mandelkow,et al.  Nucleotide‐induced conformations in the neck region of dimeric kinesin , 2003, The EMBO journal.

[28]  Joshua W. Shaevitz,et al.  Probing the kinesin reaction cycle with a 2D optical force clamp , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Christopher M. Farrell,et al.  A Kinesin Switch I Arginine to Lysine Mutation Rescues Microtubule Function* , 2003, Journal of Biological Chemistry.

[30]  Steven M. Block,et al.  Kinesin Moves by an Asymmetric Hand-OverHand Mechanism , 2003 .

[31]  Robert A Cross,et al.  The kinetic mechanism of kinesin. , 2004, Trends in biochemical sciences.

[32]  R. Cross,et al.  What kinesin does at roadblocks: the coordination mechanism for molecular walking , 2004, The EMBO journal.

[33]  Andreas Hoenger,et al.  Kinesin's second step. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Lawrence C Kuo,et al.  Inhibition of a mitotic motor protein: where, how, and conformational consequences. , 2004, Journal of molecular biology.

[35]  R. Vale,et al.  Kinesin Walks Hand-Over-Hand , 2004, Science.

[36]  J. Howard,et al.  Inhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  T. Kapoor,et al.  The Rate of Bipolar Spindle Assembly Depends on the Microtubule-Gliding Velocity of the Mitotic Kinesin Eg5 , 2004, Current Biology.

[38]  R. Cross,et al.  Mechanics of the kinesin step , 2005, Nature.

[39]  C. Asbury Kinesin: world's tiniest biped. , 2005, Current opinion in cell biology.

[40]  Nobutaka Hirokawa,et al.  Analysis of the kinesin superfamily: insights into structure and function. , 2005, Trends in cell biology.

[41]  E. Peterman,et al.  The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks , 2005, Nature.

[42]  D. Hackney,et al.  The tethered motor domain of a kinesin-microtubule complex catalyzes reversible synthesis of bound ATP. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Rosenfeld,et al.  Docking and Rolling, a Model of How the Mitotic Motor Eg5 Works* , 2005, Journal of Biological Chemistry.

[44]  S. Auerbach,et al.  Alternating Site ATPase Pathway of Rat Conventional Kinesin* , 2005, Journal of Biological Chemistry.

[45]  Paul R Selvin,et al.  Kinesin: walking, crawling or sliding along? , 2005, Trends in cell biology.

[46]  Albert Sickmann,et al.  Feedback of the Kinesin-1 Neck-linker Position on the Catalytic Site* , 2006, Journal of Biological Chemistry.

[47]  E. Peterman,et al.  Allosteric inhibition of kinesin-5 modulates its processive directional motility , 2006, Nature chemical biology.

[48]  M. Hoyt,et al.  Homotetrameric Form of Cin8p, a Saccharomyces cerevisiae Kinesin-5 Motor, Is Essential for Its in Vivo Function* , 2006, Journal of Biological Chemistry.

[49]  Steven M Block,et al.  Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Polly M. Fordyce,et al.  Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro , 2006, Nature Cell Biology.

[51]  Troy C. Krzysiak,et al.  A structural model for monastrol inhibition of dimeric kinesin Eg5 , 2006, The EMBO journal.

[52]  Nico Stuurman,et al.  Single-molecule observations of neck linker conformational changes in the kinesin motor protein , 2006, Nature Structural &Molecular Biology.

[53]  Troy C. Krzysiak,et al.  Dimeric Eg5 Maintains Processivity through Alternating-site Catalysis with Rate-limiting ATP Hydrolysis* , 2006, Journal of Biological Chemistry.

[54]  Hernando Sosa,et al.  Nucleotide binding and hydrolysis induces a disorder-order transition in the kinesin neck-linker region , 2006, Nature Structural &Molecular Biology.

[55]  R. Cross,et al.  Kinesin's moonwalk. , 2006, Current opinion in cell biology.

[56]  Steven M Block,et al.  Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. , 2007, Biophysical journal.