A Bifurcation Theory for Three-Dimensional Oblique Travelling Gravity-Capillary Water Waves

This article presents a rigorous existence theory for small-amplitude threedimensional travelling water waves. The hydrodynamic problem is formulated as an infinite-dimensional Hamiltonian system in which an arbitrary horizontal spatial direction is the timelike variable. Wave motions that are periodic in a second, different horizontal direction are detected using a centre-manifold reduction technique by which the problem is reduced to a locally equivalent Hamiltonian system with a finite number of degrees of freedom.

[1]  Eric Lombardi Orbits Homoclinic to Exponentially Small Periodic Orbits for a Class of Reversible Systems. Application to Water Waves , 1997 .

[2]  J. Duistermaat Bifurcations of periodic solutions near equilibrium points of Hamiltonian systems , 1984 .

[3]  Robert L. Pego,et al.  A Host of Traveling Waves in a Model of Three-Dimensional Water-Wave Dynamics , 2002, J. Nonlinear Sci..

[4]  Walter Craig,et al.  Traveling Two and Three Dimensional Capillary Gravity Water Waves , 2000, SIAM J. Math. Anal..

[5]  A. Mielke,et al.  A spatial dynamics approach to three-dimensional gravity-capillary steady water waves , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  J. J. Stoker Water Waves: The Mathematical Theory with Applications , 1957 .

[7]  B. Buffoni,et al.  A Multiplicity Result for Solitary Gravity-Capillary Waves in Deep Water via Critical-Point Theory , 1999 .

[8]  Frédéric Dias,et al.  NONLINEAR GRAVITY AND CAPILLARY-GRAVITY WAVES , 1999 .

[9]  Frédéric Dias,et al.  Water-Waves as a Spatial Dynamical System , 2003 .

[10]  Jürgen Moser,et al.  Periodic orbits near an equilibrium and a theorem by Alan Weinstein , 1976 .

[11]  Alan Weinstein,et al.  Normal modes for nonlinear hamiltonian systems , 1973 .

[12]  D. Schmidt Periodic solutions near a resonant equilibrium of a Hamiltonian system , 1974 .

[13]  A. Mielke Hamiltonian and Lagrangian Flows on Center Manifolds , 1991 .

[14]  Klaus Kirchgässner,et al.  Water waves for small surface tension: an approach via normal form , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[15]  Alexander Mielke,et al.  Reduction of quasilinear elliptic equations in cylindrical domains with applications , 1988 .

[16]  K. Kirchgässner Wave-solutions of reversible systems and applications , 1982 .

[17]  G. Iooss,et al.  Perturbed Homoclinic Solutions in Reversible 1:1 Resonance Vector Fields , 1993 .

[18]  J. Toland,et al.  A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  K. Kirchgässner,et al.  Three-Dimensional Steady Capillary-Gravity Waves , 2001 .

[20]  M. Groves An existence theory for three-dimensional periodic travelling gravity-capillary water waves with bounded transverse profiles , 2001 .

[21]  R. Pego,et al.  Spatial wave dynamics of steady oblique wave interactions , 2000 .

[22]  T. Akylas Three-Dimensional Long Water-Wave Phenomena , 1994 .

[23]  Eric Lombardi,et al.  Oscillatory Integrals and Phenomena Beyond all Algebraic Orders: with Applications to Homoclinic Orbits in Reversible Systems , 2000 .

[24]  Wenming Zou,et al.  Solitary waves of the generalized Kadomtsev-Petviashvili equations , 2002, Appl. Math. Lett..

[25]  J. C. Luke A variational principle for a fluid with a free surface , 1967, Journal of Fluid Mechanics.

[26]  K. Kirchgässner Nonlinearly Resonant Surface Waves and Homoclinic Bifurcation , 1988 .

[27]  J. Reeder,et al.  Three-dimensional, nonlinear wave interaction in water of constant depth☆ , 1981 .

[28]  J. Saut,et al.  Solitary waves of generalized Kadomtsev-Petviashvili equations , 1997 .

[29]  Norman W. Scheffner,et al.  Two-dimensional periodic waves in shallow water , 1989, Journal of Fluid Mechanics.