Qualitative map learning based on covisibility of objects

Autonomous map construction is one of the most fundamental and significant issues in intelligent mobile robot research. While a variety of map construction methods have been proposed, most require some quantitative measurements of the environment and a mechanism of precise self-localization. This paper proposes a novel map construction method using only qualitative information about "how often two objects are observed simultaneously." This method is based on heuristics-"closely located objects are likely to be seen simultaneously more often than distant objects" and a well-known multivariate data analysis technique-multidimensional scaling. A significant feature of this method is that it requires neither quantitative sensor measurements nor information about the robot's own position. Simulation and experimental results demonstrated that this method is sufficiently practical for capturing a qualitative spatial relationship among identifiable landmark objects rapidly.

[1]  Reid G. Simmons,et al.  Unsupervised learning of probabilistic models for robot navigation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[2]  Massimiliano Pontil,et al.  Support Vector Machines for 3D Object Recognition , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Pierre Courrieu,et al.  Straight monotonic embedding of data sets in Euclidean spaces , 2002, Neural Networks.

[4]  Drew McDermott,et al.  Error correction in mobile robot map learning , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[5]  Yoram Koren,et al.  Histogramic in-motion mapping for mobile robot obstacle avoidance , 1991, IEEE Trans. Robotics Autom..

[6]  Bir Bhanu,et al.  Recognition of Articulated and Occluded Objects , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[8]  David Kortenkamp,et al.  Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.

[9]  Michael R. M. Jenkin,et al.  Computational principles of mobile robotics , 2000 .

[10]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[11]  Michael I. Miller,et al.  Asymptotic performance analysis of Bayesian target recognition , 2000, IEEE Trans. Inf. Theory.

[12]  Karen B. Sarachik The Effect of Gaussian Error in Object Recognition , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[14]  Wolfram Burgard,et al.  Integrating Topological and Metric Maps for Mobile Robot Navigation: A Statistical Approach , 1998, AAAI/IAAI.

[15]  Lauren B. Doyle,et al.  Indexing and abstracting by association , 1962 .

[16]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[17]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[18]  Benjamin Kuipers,et al.  The Spatial Semantic Hierarchy , 2000, Artif. Intell..

[19]  Benjamin Kuipers,et al.  Learning to Explore and Build Maps , 1994, AAAI.

[20]  R. Kitchin,et al.  Techniques to Collect and Analyze the Cognitive Map Knowledge of Persons with Visual Impairment Or Blindness: Issues of Validity , 1997 .

[21]  Scott Sanner,et al.  Towards object mapping in non-stationary environments with mobile robots , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Robin R. Murphy,et al.  Introduction to AI Robotics , 2000 .

[23]  Maja J. Mataric,et al.  Integration of representation into goal-driven behavior-based robots , 1992, IEEE Trans. Robotics Autom..

[24]  Leslie Pack Kaelbling,et al.  Learning Topological Maps with Weak Local Odometric Information , 1997, IJCAI.

[25]  Christoph Schlieder,et al.  Representing Visible Locations for Qualitative Navigation , 1993 .

[26]  Brian Yamauchi,et al.  A frontier-based approach for autonomous exploration , 1997, Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation'.

[27]  Yasushi Yagi,et al.  Map-based navigation for a mobile robot with omnidirectional image sensor COPIS , 1995, IEEE Trans. Robotics Autom..

[28]  J. M. M. Montiel,et al.  The SPmap: a probabilistic framework for simultaneous localization and map building , 1999, IEEE Trans. Robotics Autom..

[29]  Johan Bollen,et al.  Evaluation of Digital Library Impact and User Communities by Analysis of Usage Patterns , 2002, D Lib Mag..

[30]  Bir Bhanu,et al.  Predicting Performance of Object Recognition , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Christos Faloutsos,et al.  FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets , 1995, SIGMOD '95.

[32]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[33]  Peter Dayan,et al.  Q-learning , 1992, Machine Learning.

[34]  John J. Leonard,et al.  A Computationally Efficient Method for Large-Scale Concurrent Mapping and Localization , 2000 .

[35]  Matteo Golfarelli,et al.  Elastic correction of dead-reckoning errors in map building , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[36]  A. Householder,et al.  Discussion of a set of points in terms of their mutual distances , 1938 .

[37]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning: An Overview , 2001, Fundam. Informaticae.

[38]  Jeffrey K. Uhlmann,et al.  Nondivergent simultaneous map building and localization using covariance intersection , 1997, Defense, Security, and Sensing.

[39]  Tod S. Levitt,et al.  Qualitative Navigation for Mobile Robots , 1990, Artif. Intell..

[40]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[41]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[42]  Lauren B. Doyle,et al.  Indexing and abstracting by association. Part I , 1997 .

[43]  Hiroshi Ishiguro,et al.  Acquisition and Propagation of Spatial Constraints Based on Qualitative Information , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[45]  Sebastian Thrun,et al.  Learning Hierarchical Object Maps of Non-Stationary Environments with Mobile Robots , 2002, UAI.

[46]  Viii Supervisor Sonar-Based Real-World Mapping and Navigation , 2001 .

[47]  Marilena Vendittelli,et al.  Real-time map building and navigation for autonomous robots in unknown environments , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[48]  Stephen R. Marsland,et al.  Learning globally consistent maps by relaxation , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[49]  Gabriel A. Radvansky,et al.  Mental Organization of Maps , 1998 .

[50]  William Whittaker,et al.  Autonomous exploration using multiple sources of information , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[51]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[52]  David Harel,et al.  Drawing graphs nicely using simulated annealing , 1996, TOGS.

[53]  Michael Lindenbaum Bounds on Shape Recognition Performance , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Peter Dayan,et al.  Technical Note: Q-Learning , 2004, Machine Learning.

[55]  Alan C. Schultz,et al.  Integrating Exploration, Localization, Navigation and Planning with a Common Representation , 1999, Auton. Robots.

[56]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[57]  U. Grenander,et al.  Asymptotic Performance Analysis of Bayesian Object Recognition , 1998 .

[58]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[59]  Uwe R. Zimmer,et al.  Robust world-modelling and navigation in a real world , 1996, Neurocomputing.

[60]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[61]  John J. Leonard,et al.  Adaptive Mobile Robot Navigation and Mapping , 1999, Int. J. Robotics Res..

[62]  Robin R. Murphy,et al.  Artificial intelligence and mobile robots: case studies of successful robot systems , 1998 .

[63]  Francesco Zanichelli,et al.  Qualitative spatial representations from task-oriented perception and exploratory behaviors , 1998, Robotics Auton. Syst..

[64]  S. Betge-Brezetz,et al.  Decoupling odometry and exteroceptive perception in building a global world map of a mobile robot: the use of local maps , 1996, Proceedings of IEEE International Conference on Robotics and Automation.