Interactively visualizing procedurally encoded scalar fields

While interactive visualization of rectilinear gridded volume data sets can now be accomplished using texture mapping hardware on commodity PCs, interactive rendering and exploration of large scattered or unstructured data sets is still a challenging problem. We have developed a new approach that allows the interactive rendering and navigation of procedurally-encoded 3D scalar fields by reconstructing these fields on PC class graphics processing units. Since the radial basis functions (RBFs) we use for encoding can provide a compact representation of volumetric scalar fields, the large grid/mesh traditionally needed for rendering is no longer required and ceases to be a data transfer and computational bottleneck during rendering. Our new approach will interactively render RBF encoded data obtained from arbitrary volume data sets, including both structured volume models and unstructured scattered volume models. This procedural reconstruction of large data sets is flexible, extensible, and can take advantage of the Moore's Law cubed increase in performance of graphics hardware.

[1]  Peter Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, SIGGRAPH 1990.

[2]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[3]  Peter L. Williams Visibility-ordering meshed polyhedra , 1992, TOGS.

[4]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[5]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH 1999.

[6]  Hans Hagen,et al.  Hierarchical clustering for unstructured volumetric scalar fields , 2003, IEEE Visualization, 2003. VIS 2003..

[7]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2005, SIGGRAPH Courses.

[8]  Kenneth Moreland,et al.  Tetrahedral projection using vertex shaders , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.

[9]  Thomas Ertl,et al.  Level-of-Detail Volume Rendering via 3D Textures , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[10]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH Courses.

[11]  P. Hanrahan,et al.  Area and volume coherence for efficient visualization of 3D scalar functions , 1990, VVS.

[12]  Tosiyasu L. Kunii,et al.  Function Representation of Solids Reconstructed from Scattered Surface Points and Contours , 1995, Comput. Graph. Forum.

[13]  Jian Huang,et al.  FastSplats: optimized splatting on rectilinear grids , 2000, IEEE Visualization.

[14]  Hans Hagen,et al.  Least squares surface approximation using multiquadrics and parametric domain distortion , 1999, Comput. Aided Geom. Des..

[15]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[16]  Klaus Mueller,et al.  FastSplats: optimized splatting on rectilinear grids , 2000, VIS '00.

[17]  A. Ardeshir Goshtasby,et al.  Grouping and parameterizing irregularly spaced points for curve fitting , 2000, TOGS.

[18]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[19]  Bernd Hamann,et al.  Large Scale Isosurface Bicubic Subdivision-Surface Wavelets for Representation and Visualization , 2000 .

[20]  P. Hanrahan,et al.  Area and volume coherence for efficient visualization of 3D scalar functions , 1990, SIGGRAPH 1990.

[21]  Kalpathi R. Subramanian,et al.  Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions , 2001, Proceedings International Conference on Shape Modeling and Applications.

[22]  Arnaud Jacquin,et al.  Harnessing chaos for image synthesis , 1988, SIGGRAPH.

[23]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2002, TOGS.

[24]  Martin Kraus,et al.  High-quality pre-integrated volume rendering using hardware-accelerated pixel shading , 2001, HWWS '01.

[25]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[26]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[27]  Kalpathi R. Subramanian,et al.  Interpolating implicit surfaces from scattered surface data using compactly supported radial basis functions , 2001, Proceedings International Conference on Shape Modeling and Applications.

[28]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[29]  Bernd Hamann,et al.  Bicubic subdivision-surface wavelets for large-scale isosurface representation and visualization , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[30]  Thomas Ertl,et al.  Hardware-based view-independent cell projection , 2002, VVS '02.

[31]  Nelson L. Max,et al.  Sorting and hardware assisted rendering for volume visualization , 1994, VVS '94.

[32]  Joydeep Ghosh,et al.  An overview of radial basis function networks , 2001 .

[33]  Rüdiger Westermann,et al.  Efficiently using graphics hardware in volume rendering applications , 1998, SIGGRAPH.

[34]  Richard Franke,et al.  Knot Selection for Least Squares Thin Plate Splines , 1992, SIAM J. Sci. Comput..

[35]  David S. Ebert,et al.  Interactive translucent volume rendering and procedural modeling , 2002, IEEE Visualization, 2002. VIS 2002..

[36]  Dietmar Saupe,et al.  Rapid High Quality Compression of Volume Data for Visualization , 2001, Comput. Graph. Forum.

[37]  Bernd Hamann,et al.  Multiresolution techniques for interactive texture-based volume visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[38]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[39]  M. Bauer,et al.  Interactive volume on standard PC graphics hardware using multi-textures and multi-stage rasterization , 2000, Workshop on Graphics Hardware.

[40]  Gregory M. Nielson,et al.  Scattered Data Interpolation and Applications: A Tutorial and Survey , 1991 .

[41]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[42]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000 .

[43]  T. Ertl,et al.  Hardware-based view-independent cell projection , 2002, Symposium on Volume Visualization and Graphics, 2002. Proceedings. IEEE / ACM SIGGRAPH.