Chemically inducible diffusion trap at cilia reveals molecular sieve–like barrier

[1]  Richard Cole,et al.  Live-cell imaging , 2014, Cell adhesion & migration.

[2]  Robert DeRose,et al.  Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology , 2013, Pflügers Archiv - European Journal of Physiology.

[3]  Colin A. Johnson,et al.  The transition zone: an essential functional compartment of cilia , 2012, Cilia.

[4]  Robert DeRose,et al.  Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. , 2012, Nature chemical biology.

[5]  Hooi Lynn Kee,et al.  A Size-Exclusion Permeability Barrier and Nucleoporins Characterize a Ciliary Pore Complex that Regulates Transport into Cilia , 2012, Nature Cell Biology.

[6]  M. Najafi,et al.  Steric volume exclusion sets soluble protein concentrations in photoreceptor sensory cilia , 2011, Proceedings of the National Academy of Sciences.

[7]  Ben Chih,et al.  A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain , 2011, Nature Cell Biology.

[8]  I. Mellman,et al.  Jcb: Article , 2022 .

[9]  S. Takeda,et al.  Signaling through the primary cilium affects glial cell survival under a stressed environment , 2011, Glia.

[10]  M. Nachury,et al.  Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? , 2010, Annual review of cell and developmental biology.

[11]  M. Scott,et al.  A Septin Diffusion Barrier at the Base of the Primary Cilium Maintains Ciliary Membrane Protein Distribution , 2010, Science.

[12]  C. Chmelik,et al.  A new view of diffusion in nanoporous materials , 2010 .

[13]  Toru Komatsu,et al.  Organelle-Specific, Rapid Induction of Molecular Activities and Membrane Tethering , 2010, Nature Methods.

[14]  K. Narita,et al.  Multiple primary cilia modulate the fluid transcytosis in choroid plexus epithelium , 2009, Neuroscience Research.

[15]  Steffen Frey,et al.  Characterisation of the passive permeability barrier of nuclear pore complexes , 2009, The EMBO journal.

[16]  B. Yoder,et al.  Primary Cilia and Signaling Pathways in Mammalian Development, Health and Disease , 2009, Nephron Physiology.

[17]  M. D'Angelo,et al.  Structure, dynamics and function of nuclear pore complexes. , 2008, Trends in cell biology.

[18]  Jennifer J. Kohler,et al.  Conditional Glycosylation in Eukaryotic Cells Using a Biocompatible Chemical Inducer of Dimerization , 2008, Journal of the American Chemical Society.

[19]  Andrew D. Johnson,et al.  Identification of ciliary localization sequences within the third intracellular loop of G protein-coupled receptors. , 2008, Molecular biology of the cell.

[20]  M. Sheng,et al.  Role of Septin Cytoskeleton in Spine Morphogenesis and Dendrite Development in Neurons , 2007, Current Biology.

[21]  Erich A. Nigg,et al.  Cep164, a novel centriole appendage protein required for primary cilium formation , 2007, The Journal of cell biology.

[22]  V. Sheffield,et al.  A Core Complex of BBS Proteins Cooperates with the GTPase Rab8 to Promote Ciliary Membrane Biogenesis , 2007, Cell.

[23]  F. Hildebrandt,et al.  Nephronophthisis-associated ciliopathies. , 2007, Journal of the American Society of Nephrology : JASN.

[24]  H. Omran,et al.  Nephrocystin and ciliary defects not only in the kidney? , 2007, Pediatric Nephrology.

[25]  P. Satir,et al.  Overview of structure and function of mammalian cilia. , 2007, Annual review of physiology.

[26]  E. Pugh,et al.  Light-driven translocation of signaling proteins in vertebrate photoreceptors. , 2006, Trends in cell biology.

[27]  J. Reiter,et al.  The Primary Cilium as the Cell's Antenna: Signaling at a Sensory Organelle , 2006, Science.

[28]  John R Yates,et al.  Large Scale Protein Profiling by Combination of Protein Fractionation and Multidimensional Protein Identification Technology (MudPIT)* , 2006, Molecular & Cellular Proteomics.

[29]  Tobias Meyer,et al.  An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways , 2005, Nature Methods.

[30]  B. Matthews The structure of E. coli β-galactosidase , 2005 .

[31]  N. Hirokawa,et al.  Mechanism of Nodal Flow: A Conserved Symmetry Breaking Event in Left-Right Axis Determination , 2005, Cell.

[32]  J. Hurley,et al.  Light-Dependent Redistribution of Arrestin in Vertebrate Rods Is an Energy-Independent Process Governed by Protein-Protein Interactions , 2005, Neuron.

[33]  K. Mikoshiba,et al.  Lateral Diffusion of Inositol 1,4,5-Trisphosphate Receptor Type 1 Is Regulated by Actin Filaments and 4.1N in Neuronal Dendrites* , 2004, Journal of Biological Chemistry.

[34]  A S Verkman,et al.  Molecular crowding reduces to a similar extent the diffusion of small solutes and macromolecules: measurement by fluorescence correlation spectroscopy , 2004, Journal of molecular recognition : JMR.

[35]  S. Bowser,et al.  Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ , 2004, Cell biology international.

[36]  A. Verkman,et al.  Translational Diffusion of Macromolecule-sized Solutes in Cytoplasm and Nucleus , 1997, The Journal of cell biology.

[37]  B. Welch The structure , 1992 .

[38]  Sahimi,et al.  Diffusion of large molecules in porous media. , 1989, Physical review letters.

[39]  F. Celada,et al.  A dimer--dimer binding region in beta-galactosidase. , 1979, Biochemistry.

[40]  K. Svoboda,et al.  Structure and function of dendritic spines. , 2002, Annual review of physiology.

[41]  T. Laurent,et al.  A theory of gel filtration and its exeperimental verification , 1964 .