Study of RADARSAT-2 synthetic aperture radar data for observing sensitive factors of global environmental change

Abstract Global environmental change has gained widespread global attention. It is a complex system with special spatial and temporal evolutionary characteristics. Sensitive factors are indicators of global environmental change, and some can be observed with Earth observation technology. RADARSAT-2 is capable of polarimetric and interferometric observations, which can provide an effective way to document some sensitive factors of global environmental change. This study focuses on the usage of RADARSAT-2 data for observing sensitive factors of environmental change and building highly accurate application models that connect synthetic aperture radar data and observable sensitive factors. These include (1) extracting spatiotemporal distribution of large-scale alluvial fan, (2) extracting vegetation vertical structure, (3) detecting urban land cover change, and (4) monitoring seasonal floods. From this study, RADARSAT-2 data have been demonstrated to have excellent capabilities in documenting several sensitive factors related to global environmental change.

[1]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[2]  J. J. van der Sanden,et al.  Anticipated applications potential of RADARSAT-2 data , 2004 .

[3]  Konstantinos Papathanassiou,et al.  Pine Forest Height Inversion Using Single-Pass X-Band PolInSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Pascale Dubois-Fernandez,et al.  Forest Height Inversion Using High-Resolution P-Band Pol-InSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Jaan Praks,et al.  Studies of phase center and extinction coefficient of boreal forest using X- and L-band polarimetric interferometry combined with lidar measurements , 2009 .

[6]  Guobin Zhu,et al.  Classification using ASTER data and SVM algorithms;: The case study of Beer Sheva, Israel , 2002 .

[7]  Ronald I. Dorn,et al.  The Role of Climatic Change in Alluvial Fan Development , 2009 .

[8]  K. L. Frankel,et al.  Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data , 2007 .

[9]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[10]  Xinwu Li,et al.  Estimating urban impervious surfaces from Landsat-5 TM imagery using multilayer perceptron neural network and support vector machine , 2011 .

[11]  R. Treuhaft,et al.  Vertical structure of vegetated land surfaces from interferometric and polarimetric radar , 2000 .

[12]  L. C. Graham,et al.  Synthetic interferometer radar for topographic mapping , 1974 .

[13]  E. Ben-Dor,et al.  Quantitative mapping of arid alluvial fan surfaces using field spectrometer and hyperspectral remote sensing , 2006 .

[14]  H. Huppert,et al.  Extreme natural hazards: population growth, globalization and environmental change , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Liming Jiang,et al.  Synergistic use of optical and InSAR data for urban impervious surface mapping: a case study in Hong Kong , 2009 .

[16]  Giles M. Foody,et al.  A relative evaluation of multiclass image classification by support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[17]  P. Jungerius Soils and Geomorphology , 1985 .

[18]  Marc W. Caffee,et al.  Dates and rates of arid region geomorphic processes , 2006 .

[19]  K. S. Kierein-Young The integration of optical and radar data to characterize mineralogy and morphology of surfaces in Death Valley, California, U.S.A. , 1997 .

[20]  Bryan Mercer,et al.  Forest Height and Ground Topography at L-Band from an Experimental Single-Pass Airborne Pol-InSAR System , 2009 .

[21]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[22]  C. Barbosa,et al.  Dual-season mapping of wetland inundation and vegetation for the central Amazon basin , 2003 .

[23]  T. Esch,et al.  Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data , 2009 .

[24]  Paul M. Mather,et al.  Support vector machines for classification in remote sensing , 2005 .

[25]  Andreas Schmitt,et al.  SAR polarimetric change detection for flooded vegetation , 2013, Int. J. Digit. Earth.

[26]  Kevin B. Smith,et al.  Effects of seasonal hydrologic patterns in south Florida wetlands on radar backscatter measured from ERS-2 SAR imagery , 2003 .

[27]  W. Bull,et al.  The alluvial-fan environment , 1977 .

[28]  Irena Hajnsek,et al.  Biomass estimation from polarimetric SAR interferometry over heterogeneous forest terrain , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[29]  Qihao Weng,et al.  Extracting impervious surfaces from medium spatial resolution multispectral and hyperspectral imagery: a comparison , 2008 .

[30]  I. Hajnsek,et al.  Biomass estimation as a function of vertical forest structure and forest height. Potential and limiations for remote sensing (radar and LiDAR) , 2011 .

[31]  Huadong Guo,et al.  Object oriented method for detection of inundation extent using multi-polarized synthetic aperture radar image , 2008 .

[32]  T. Farr,et al.  Geomorphic processes and remote sensing signatures of alluvial fans in the Kun Lun Mountains, China , 1996 .

[33]  W. Bull,et al.  Geomorphic Responses to Climatic Change , 1991 .

[34]  Hans Pretzsch,et al.  Biomass estimation as a function of vertical forest structure and forest height - Potential and limitations for Radar Remote Sensing , 2010 .

[35]  C. Arnold,et al.  IMPERVIOUS SURFACE COVERAGE: THE EMERGENCE OF A KEY ENVIRONMENTAL INDICATOR , 1996 .

[36]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[37]  D. Lu,et al.  Extraction of urban impervious surfaces from an IKONOS image , 2009 .

[38]  Uwe Stilla,et al.  Road extraction from SAR imagery , 2007 .

[39]  S. Cloude,et al.  Three-stage inversion process for polarimetric SAR interferometry , 2003 .